Huihui Chen, Darinka Dentcheva, Yang Lin, Gregory J. Stock
{"title":"Central limit theorems for vector-valued composite functionals with smoothing and applications","authors":"Huihui Chen, Darinka Dentcheva, Yang Lin, Gregory J. Stock","doi":"10.1007/s10463-025-00934-z","DOIUrl":null,"url":null,"abstract":"<div><p>This paper focuses on vector-valued composite functionals, which may be nonlinear in probability. Our goal is establishing central limit theorems for these functionals when employed by mixed estimators. Our study is relevant to the evaluation and comparison of risk in decision-making contexts and extends to functionals that arise in machine learning. A generalized family of composite risk functionals is presented, which encompasses coherent risk measures, including systemic risk. The paper makes two main contributions. First, we analyze vector-valued functionals and provide a framework for evaluating high-dimensional risks. This enables comparison of multiple risk measures and supports estimation and asymptotic analysis of systemic risk and its optimal value in decision-making. Second, we derive new central limit theorems for optimized composite functionals using mixed estimators, including empirical and smoothed types. We give verifiable conditions for central limit formulae and demonstrate their applicability to several risk measures.</p></div>","PeriodicalId":55511,"journal":{"name":"Annals of the Institute of Statistical Mathematics","volume":"77 5","pages":"821 - 852"},"PeriodicalIF":0.6000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the Institute of Statistical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-025-00934-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper focuses on vector-valued composite functionals, which may be nonlinear in probability. Our goal is establishing central limit theorems for these functionals when employed by mixed estimators. Our study is relevant to the evaluation and comparison of risk in decision-making contexts and extends to functionals that arise in machine learning. A generalized family of composite risk functionals is presented, which encompasses coherent risk measures, including systemic risk. The paper makes two main contributions. First, we analyze vector-valued functionals and provide a framework for evaluating high-dimensional risks. This enables comparison of multiple risk measures and supports estimation and asymptotic analysis of systemic risk and its optimal value in decision-making. Second, we derive new central limit theorems for optimized composite functionals using mixed estimators, including empirical and smoothed types. We give verifiable conditions for central limit formulae and demonstrate their applicability to several risk measures.
期刊介绍:
Annals of the Institute of Statistical Mathematics (AISM) aims to provide a forum for open communication among statisticians, and to contribute to the advancement of statistics as a science to enable humans to handle information in order to cope with uncertainties. It publishes high-quality papers that shed new light on the theoretical, computational and/or methodological aspects of statistical science. Emphasis is placed on (a) development of new methodologies motivated by real data, (b) development of unifying theories, and (c) analysis and improvement of existing methodologies and theories.