Manfred H. Wagner, Max G. Schußmann, Manfred Wilhelm, Valerian Hirschberg
{"title":"A novel generalized strain hardening index (SHI) for long-chain branched polymer melts and its correlation to the steady-state compliance","authors":"Manfred H. Wagner, Max G. Schußmann, Manfred Wilhelm, Valerian Hirschberg","doi":"10.1007/s00397-025-01509-8","DOIUrl":null,"url":null,"abstract":"<div><p>Strain hardening of polymer melts in extensional flows is considered a desirable rheological feature because it stabilizes the homogeneity of free surface flows which is of importance, e.g., in film blowing, blow molding, and fiber spinning. Relating strain hardening to molecular characteristics, specifically topology in homopolymer melts, has been a long-standing challenge in rheology. While long-chain branching is known to be a decisive feature to enhance strain hardening, a general, quantitative relation between strain hardening and molecular topology is still missing. We propose a novel Strain Hardening Index (SHI) that can be used to assess the strain hardening behavior and to compare strain hardening of polymer melts with different topology and different chemistry, and we discuss its correlation with the steady-state compliance <span>\\(J_s^0\\)</span>. We consider the strain hardening characteristics of model polystyrene comb and pom-pom systems as well as of model poly(( ±)-lactide) graft copolymers and several polydisperse low-density polyethylene melts. We show that the proposed SHI of typical low-density polyethylene melts is equivalent to that of polystyrene pom-poms and combs with specific topologies. This finding might pave the way to rheologically informed topological tailoring of the strain hardening of industrially important polymers such as, e.g., polyethylene.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":"64 8","pages":"355 - 368"},"PeriodicalIF":3.0000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00397-025-01509-8.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rheologica Acta","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00397-025-01509-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Strain hardening of polymer melts in extensional flows is considered a desirable rheological feature because it stabilizes the homogeneity of free surface flows which is of importance, e.g., in film blowing, blow molding, and fiber spinning. Relating strain hardening to molecular characteristics, specifically topology in homopolymer melts, has been a long-standing challenge in rheology. While long-chain branching is known to be a decisive feature to enhance strain hardening, a general, quantitative relation between strain hardening and molecular topology is still missing. We propose a novel Strain Hardening Index (SHI) that can be used to assess the strain hardening behavior and to compare strain hardening of polymer melts with different topology and different chemistry, and we discuss its correlation with the steady-state compliance \(J_s^0\). We consider the strain hardening characteristics of model polystyrene comb and pom-pom systems as well as of model poly(( ±)-lactide) graft copolymers and several polydisperse low-density polyethylene melts. We show that the proposed SHI of typical low-density polyethylene melts is equivalent to that of polystyrene pom-poms and combs with specific topologies. This finding might pave the way to rheologically informed topological tailoring of the strain hardening of industrially important polymers such as, e.g., polyethylene.
期刊介绍:
"Rheologica Acta is the official journal of The European Society of Rheology. The aim of the journal is to advance the science of rheology, by publishing high quality peer reviewed articles, invited reviews and peer reviewed short communications.
The Scope of Rheologica Acta includes:
- Advances in rheometrical and rheo-physical techniques, rheo-optics, microrheology
- Rheology of soft matter systems, including polymer melts and solutions, colloidal dispersions, cement, ceramics, glasses, gels, emulsions, surfactant systems, liquid crystals, biomaterials and food.
- Rheology of Solids, chemo-rheology
- Electro and magnetorheology
- Theory of rheology
- Non-Newtonian fluid mechanics, complex fluids in microfluidic devices and flow instabilities
- Interfacial rheology
Rheologica Acta aims to publish papers which represent a substantial advance in the field, mere data reports or incremental work will not be considered. Priority will be given to papers that are methodological in nature and are beneficial to a wide range of material classes. It should also be noted that the list of topics given above is meant to be representative, not exhaustive. The editors welcome feedback on the journal and suggestions for reviews and comments."