Yaqiu Mao , Pengli Wei , Ting Wei , Yalei Wang , Zhenze Qi , Xu Cai , Changkai Jia , Zhiyuan Zhao , Bingkun Li , Min Qiao , Yaxin Zou , Zhihui Mu , Xiaofang Lei , Tingting Yang , Shiyang Sun , Xuesong Feng , Pengyun Li , Zhibing Zheng
{"title":"Development of highly potent and selective oncogenic KRASG12D PROTAC degraders","authors":"Yaqiu Mao , Pengli Wei , Ting Wei , Yalei Wang , Zhenze Qi , Xu Cai , Changkai Jia , Zhiyuan Zhao , Bingkun Li , Min Qiao , Yaxin Zou , Zhihui Mu , Xiaofang Lei , Tingting Yang , Shiyang Sun , Xuesong Feng , Pengyun Li , Zhibing Zheng","doi":"10.1016/j.ejmcr.2025.100296","DOIUrl":null,"url":null,"abstract":"<div><div>As a key driver of tumorigenesis and cancer development, the KRAS<sup>G12D</sup> mutation is ubiquitous existed in KRAS-associated malignancies, highlighting the urgent clinical need for effective KRAS<sup>G12D</sup> targeting drugs. In this study, through rational design and multiple cell type-based antiproliferative evaluation, we identified a novel KRAS<sup>G12D</sup> inhibitor, <strong>Y-I-1</strong>, which demonstrated remarkable anti-cancer activity. Subsequent computational analyses including molecular dynamics (MD) simulations, binding free energy calculations, umbrella sampling, and protein-ligand docking revealed its excellent binding characteristics, rationalizing the observed potency. Building upon the structure of <strong>Y-I-1</strong>, we constructed proteolysis-targeting chimera (PROTAC) by conjugating it with different linker moieties and VH032. Among them, degrader <strong>Y-D-2</strong> potently and selectively exhibited nanomolar inhibitory IC<sub>50</sub>, degradation DC<sub>50</sub> values, and more than 95 % maximum degradation (D<sub>max</sub>) in KRAS<sup>G12D</sup>-mutant cancer cells via ubiquitin proteasome-involving pathway, accompanied by nanomolar IC<sub>50</sub> efficiency for phosphorylated ERK (pERK) inhibition. Mechanistically, <strong>Y-D-2</strong> significantly induced cell apoptosis, G1 cell cycle arrest and inhibited cell migration and invasion. Notably, <strong>Y-D-2</strong> led to significant tumor growth inhibition in the GP2D xenograft model with well-tolerated dose-schedules with favorable PK properties. This study not only provides an important theoretical basis for the optimal design of KRAS<sup>G12D</sup> degraders, but also highlights its potential for the treatment of KRAS<sup>G12D</sup>-driven cancers.</div></div>","PeriodicalId":12015,"journal":{"name":"European Journal of Medicinal Chemistry Reports","volume":"15 ","pages":"Article 100296"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772417425000524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
As a key driver of tumorigenesis and cancer development, the KRASG12D mutation is ubiquitous existed in KRAS-associated malignancies, highlighting the urgent clinical need for effective KRASG12D targeting drugs. In this study, through rational design and multiple cell type-based antiproliferative evaluation, we identified a novel KRASG12D inhibitor, Y-I-1, which demonstrated remarkable anti-cancer activity. Subsequent computational analyses including molecular dynamics (MD) simulations, binding free energy calculations, umbrella sampling, and protein-ligand docking revealed its excellent binding characteristics, rationalizing the observed potency. Building upon the structure of Y-I-1, we constructed proteolysis-targeting chimera (PROTAC) by conjugating it with different linker moieties and VH032. Among them, degrader Y-D-2 potently and selectively exhibited nanomolar inhibitory IC50, degradation DC50 values, and more than 95 % maximum degradation (Dmax) in KRASG12D-mutant cancer cells via ubiquitin proteasome-involving pathway, accompanied by nanomolar IC50 efficiency for phosphorylated ERK (pERK) inhibition. Mechanistically, Y-D-2 significantly induced cell apoptosis, G1 cell cycle arrest and inhibited cell migration and invasion. Notably, Y-D-2 led to significant tumor growth inhibition in the GP2D xenograft model with well-tolerated dose-schedules with favorable PK properties. This study not only provides an important theoretical basis for the optimal design of KRASG12D degraders, but also highlights its potential for the treatment of KRASG12D-driven cancers.