P. Peralta-Braz , M.M. Alamdari , M. Hassan , E. Atroshchenko
{"title":"Design of piezoelectric metastructures with multi-patch isogeometric analysis for enhanced energy harvesting and vibration suppression","authors":"P. Peralta-Braz , M.M. Alamdari , M. Hassan , E. Atroshchenko","doi":"10.1016/j.jsv.2025.119401","DOIUrl":null,"url":null,"abstract":"<div><div>Metastructures are engineered systems composed of periodic arrays of identical components, called resonators, designed to achieve specific dynamic effects, such as creating a bandgap-a frequency range where waves cannot propagate through the structure. When equipped with patches of piezoelectric material, these metastructures exhibit an additional capability: they can harvest energy effectively even from frequencies much lower than the fundamental frequency of an individual resonator. This energy harvesting capability is particularly valuable for applications where low-frequency vibrations dominate. To support the design of metastructures for dual purposes, such as energy harvesting and vibration suppression (reducing unwanted oscillations in the structure), we develop a multi-patch isogeometric model of a piezoelectric energy harvester. This model is based on a piezoelectric Kirchhoff–Love plate – a thin, flexible structure with embedded piezoelectric patches – and uses Nitsche’s method to enforce compatibility conditions in terms of displacement, rotations, shear force, and bending moments across the boundaries of different patches. The model is validated against experimental and numerical data from the literature. We then present a novel, parameterised metastructure plate design and conduct a parametric study to explore how resonator geometries affect key performance metrics, including the location and width of the band gap and the position of the first peak in the voltage frequency response function. This model can be integrated with optimisation algorithms to maximise outcomes such as energy harvesting efficiency or vibration reduction, depending on application needs.</div></div>","PeriodicalId":17233,"journal":{"name":"Journal of Sound and Vibration","volume":"619 ","pages":"Article 119401"},"PeriodicalIF":4.9000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sound and Vibration","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022460X25004742","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Metastructures are engineered systems composed of periodic arrays of identical components, called resonators, designed to achieve specific dynamic effects, such as creating a bandgap-a frequency range where waves cannot propagate through the structure. When equipped with patches of piezoelectric material, these metastructures exhibit an additional capability: they can harvest energy effectively even from frequencies much lower than the fundamental frequency of an individual resonator. This energy harvesting capability is particularly valuable for applications where low-frequency vibrations dominate. To support the design of metastructures for dual purposes, such as energy harvesting and vibration suppression (reducing unwanted oscillations in the structure), we develop a multi-patch isogeometric model of a piezoelectric energy harvester. This model is based on a piezoelectric Kirchhoff–Love plate – a thin, flexible structure with embedded piezoelectric patches – and uses Nitsche’s method to enforce compatibility conditions in terms of displacement, rotations, shear force, and bending moments across the boundaries of different patches. The model is validated against experimental and numerical data from the literature. We then present a novel, parameterised metastructure plate design and conduct a parametric study to explore how resonator geometries affect key performance metrics, including the location and width of the band gap and the position of the first peak in the voltage frequency response function. This model can be integrated with optimisation algorithms to maximise outcomes such as energy harvesting efficiency or vibration reduction, depending on application needs.
期刊介绍:
The Journal of Sound and Vibration (JSV) is an independent journal devoted to the prompt publication of original papers, both theoretical and experimental, that provide new information on any aspect of sound or vibration. There is an emphasis on fundamental work that has potential for practical application.
JSV was founded and operates on the premise that the subject of sound and vibration requires a journal that publishes papers of a high technical standard across the various subdisciplines, thus facilitating awareness of techniques and discoveries in one area that may be applicable in others.