Modeling the thermodynamic properties and determination of the melting curve of Rhodium at high temperatures and pressures

IF 3.9 Q3 PHYSICS, CONDENSED MATTER
Nguyen Quang Hoc , Tran Ky Vi , Hua Xuan Dat , Dang Ba Thanh , Nguyen Ha Linh , Anh-Tuan Tran
{"title":"Modeling the thermodynamic properties and determination of the melting curve of Rhodium at high temperatures and pressures","authors":"Nguyen Quang Hoc ,&nbsp;Tran Ky Vi ,&nbsp;Hua Xuan Dat ,&nbsp;Dang Ba Thanh ,&nbsp;Nguyen Ha Linh ,&nbsp;Anh-Tuan Tran","doi":"10.1016/j.cocom.2025.e01107","DOIUrl":null,"url":null,"abstract":"<div><div>This article presents an in-depth study of the thermodynamic and melting properties of rhodium metal with a face-centered cubic (FCC) structure under extreme temperatures and pressures. Using the statistical moment method (SMM), key structural and thermodynamic characteristics such as lattice constant, volume, thermal expansion coefficient and isobaric heat capacity are calculated at temperatures up to 2000 K and pressures up to 500 GPa taking into account the anharmonic contribution of the crystal lattice vibrations. The SMM calculations are compared with available experimental data and other theoretical results. We find that in the high temperature region, the influence of anharmonic lattice vibrations at pressure does not break the classical limit of isobaric heat capacity. The sharp decrease in thermal expansion coefficient at high pressure demonstrates dynamic stability at 300 GPa. We build the Vinet equation with the obtained parameters <span><math><mrow><msub><mi>V</mi><mn>0</mn></msub><mo>=</mo></mrow></math></span> <span><math><mrow><mn>13.867</mn><msup><mi>Å</mi><mn>3</mn></msup><mo>,</mo><msub><mi>K</mi><mn>0</mn></msub><mo>=</mo><mn>249.54</mn><mtext>GPa</mtext><mo>,</mo><msubsup><mi>K</mi><mn>0</mn><mo>′</mo></msubsup><mo>=</mo><mn>5.45</mn></mrow></math></span> combined with the heat-work equivalence principle (WHEP) to describe the melting curve for rhodium up to 500 GPa. This study provides an effective theoretical approach to investigate the structural and thermodynamic properties together with melting curve of strong anharmonic materials under extreme conditions. Our research results will provide useful information on the thermodynamic and melting properties of Rh as reinforcing agents in high-temperature thermocouples.</div></div>","PeriodicalId":46322,"journal":{"name":"Computational Condensed Matter","volume":"45 ","pages":"Article e01107"},"PeriodicalIF":3.9000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352214325001078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents an in-depth study of the thermodynamic and melting properties of rhodium metal with a face-centered cubic (FCC) structure under extreme temperatures and pressures. Using the statistical moment method (SMM), key structural and thermodynamic characteristics such as lattice constant, volume, thermal expansion coefficient and isobaric heat capacity are calculated at temperatures up to 2000 K and pressures up to 500 GPa taking into account the anharmonic contribution of the crystal lattice vibrations. The SMM calculations are compared with available experimental data and other theoretical results. We find that in the high temperature region, the influence of anharmonic lattice vibrations at pressure does not break the classical limit of isobaric heat capacity. The sharp decrease in thermal expansion coefficient at high pressure demonstrates dynamic stability at 300 GPa. We build the Vinet equation with the obtained parameters V0= 13.867Å3,K0=249.54GPa,K0=5.45 combined with the heat-work equivalence principle (WHEP) to describe the melting curve for rhodium up to 500 GPa. This study provides an effective theoretical approach to investigate the structural and thermodynamic properties together with melting curve of strong anharmonic materials under extreme conditions. Our research results will provide useful information on the thermodynamic and melting properties of Rh as reinforcing agents in high-temperature thermocouples.
模拟铑在高温高压下的热力学性质并确定其熔化曲线
本文深入研究了面心立方结构金属铑在极端温度和压力下的热力学和熔化性能。利用统计矩法(SMM),在温度高达2000 K、压力高达500 GPa的条件下,考虑到晶格振动的非调和贡献,计算了晶格常数、体积、热膨胀系数和等压热容等关键结构和热力学特性。将SMM计算结果与现有的实验数据和其他理论结果进行了比较。我们发现,在高温区域,非调和晶格振动在压力下的影响不会打破经典的等压热容极限。高压下热膨胀系数急剧下降,在300 GPa时表现出动态稳定性。结合热功等效原理(WHEP),建立了V0= 13.867Å3,K0=249.54GPa,K0′=5.45的Vinet方程来描述铑在500 GPa以下的熔化曲线。该研究为研究强非调和材料在极端条件下的结构和热力学性质以及熔化曲线提供了有效的理论途径。我们的研究结果将为Rh作为高温热电偶补强剂的热力学和熔融性能提供有用的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computational Condensed Matter
Computational Condensed Matter PHYSICS, CONDENSED MATTER-
CiteScore
3.70
自引率
9.50%
发文量
134
审稿时长
39 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信