{"title":"Sterile inflammation in laminopathies","authors":"Rafael Cancado de Faria, Susana Gonzalo","doi":"10.1016/j.ejcb.2025.151512","DOIUrl":null,"url":null,"abstract":"<div><div>Sterile inflammation, an immune response triggered in the absence of pathogens, plays a key role in various chronic diseases, including aging-related disorders, cancer, and autoimmune conditions. This process is driven by damage-associated molecular patterns, such as self-DNA in the cytosol, which activate innate immune pathways and contribute to persistent inflammation. Chronic activation of these pathways exacerbates tissue damage and accelerates disease progression. Recent studies have connected sterile inflammation to laminopathies, a group of genetic disorders caused by mutations in the <em>LMNA</em> gene, which encodes nuclear intermediate filament proteins essential for nuclear structure and function. In this review we discuss the molecular mechanisms underlying sterile inflammation in laminopathies, emphasizing self-DNA sensing, inflammatory signaling cascade activation, and their pathological consequences. Additionally, we explore potential therapeutic strategies aimed at modulating inflammation and improving disease outcomes. Understanding these interactions may provide new avenues for targeting inflammation in laminopathies and related conditions.</div></div>","PeriodicalId":12010,"journal":{"name":"European journal of cell biology","volume":"104 4","pages":"Article 151512"},"PeriodicalIF":4.3000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European journal of cell biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0171933525000378","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sterile inflammation, an immune response triggered in the absence of pathogens, plays a key role in various chronic diseases, including aging-related disorders, cancer, and autoimmune conditions. This process is driven by damage-associated molecular patterns, such as self-DNA in the cytosol, which activate innate immune pathways and contribute to persistent inflammation. Chronic activation of these pathways exacerbates tissue damage and accelerates disease progression. Recent studies have connected sterile inflammation to laminopathies, a group of genetic disorders caused by mutations in the LMNA gene, which encodes nuclear intermediate filament proteins essential for nuclear structure and function. In this review we discuss the molecular mechanisms underlying sterile inflammation in laminopathies, emphasizing self-DNA sensing, inflammatory signaling cascade activation, and their pathological consequences. Additionally, we explore potential therapeutic strategies aimed at modulating inflammation and improving disease outcomes. Understanding these interactions may provide new avenues for targeting inflammation in laminopathies and related conditions.
期刊介绍:
The European Journal of Cell Biology, a journal of experimental cell investigation, publishes reviews, original articles and short communications on the structure, function and macromolecular organization of cells and cell components. Contributions focusing on cellular dynamics, motility and differentiation, particularly if related to cellular biochemistry, molecular biology, immunology, neurobiology, and developmental biology are encouraged. Manuscripts describing significant technical advances are also welcome. In addition, papers dealing with biomedical issues of general interest to cell biologists will be published. Contributions addressing cell biological problems in prokaryotes and plants are also welcome.