Composition-deformation mechanism-property machine learning model for strength-ductility improvement of β-type titanium alloys

IF 12.8 1区 材料科学 Q1 ENGINEERING, MECHANICAL
Junyun Pan , Renhai Shi , Zhihao Zhang , Hongtao Zhang , Yuhong Zhao , Weidong Li , Huadong Fu , Jianxin Xie
{"title":"Composition-deformation mechanism-property machine learning model for strength-ductility improvement of β-type titanium alloys","authors":"Junyun Pan ,&nbsp;Renhai Shi ,&nbsp;Zhihao Zhang ,&nbsp;Hongtao Zhang ,&nbsp;Yuhong Zhao ,&nbsp;Weidong Li ,&nbsp;Huadong Fu ,&nbsp;Jianxin Xie","doi":"10.1016/j.ijplas.2025.104461","DOIUrl":null,"url":null,"abstract":"<div><div>Maximizing solid-solution hardening while incorporating deformation twinning is crucial for simultaneously enhancing their strength and ductility of β-type titanium alloys. This study proposes an integrated composition design framework (ICDF) that combines a deformation mechanism machine learning model with a yield strength machine learning model. This framework enables precise control of strengthening and deformation mechanism, effectively addressing the strength-ductility trade-off challenge of β-type titanium alloys. First, using the key alloy factor screening method, the key alloy factor-deformation mechanism prediction model and key alloy factor-yield strength prediction model were developed. Then, five kinds of new β-type titanium alloys with excellent comprehensive properties were designed by combining the two models. The new alloy Ti-5Cr-3Mo-1.5Fe exhibited a tensile strength of 1030 MPa, a yield strength of 920 MPa, and an elongation of 28 %. Compared with the commonly used commercial β-type titanium alloy Ti-5Al-5Mo-5V-3Cr (AMS 4983), the strength-ductility product of the new alloy increased by 71.7 %, while the total alloying element content decreased by 47.2 %. The new alloy exhibits intriguing deformation twinning behaviors, including stress-induced {332} 〈113〉 multi-level twinning and {332} 〈113〉 cross-twinning, which, in conjunction with the high solid-solution hardening, results in simultaneous enhancement of strength and ductility. This work provides a novel approach for the rapid design of high performance and low alloying titanium alloys through constructing multi-task models between alloy composition, deformation mechanism and resultant properties.</div></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"194 ","pages":"Article 104461"},"PeriodicalIF":12.8000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641925002207","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Maximizing solid-solution hardening while incorporating deformation twinning is crucial for simultaneously enhancing their strength and ductility of β-type titanium alloys. This study proposes an integrated composition design framework (ICDF) that combines a deformation mechanism machine learning model with a yield strength machine learning model. This framework enables precise control of strengthening and deformation mechanism, effectively addressing the strength-ductility trade-off challenge of β-type titanium alloys. First, using the key alloy factor screening method, the key alloy factor-deformation mechanism prediction model and key alloy factor-yield strength prediction model were developed. Then, five kinds of new β-type titanium alloys with excellent comprehensive properties were designed by combining the two models. The new alloy Ti-5Cr-3Mo-1.5Fe exhibited a tensile strength of 1030 MPa, a yield strength of 920 MPa, and an elongation of 28 %. Compared with the commonly used commercial β-type titanium alloy Ti-5Al-5Mo-5V-3Cr (AMS 4983), the strength-ductility product of the new alloy increased by 71.7 %, while the total alloying element content decreased by 47.2 %. The new alloy exhibits intriguing deformation twinning behaviors, including stress-induced {332} 〈113〉 multi-level twinning and {332} 〈113〉 cross-twinning, which, in conjunction with the high solid-solution hardening, results in simultaneous enhancement of strength and ductility. This work provides a novel approach for the rapid design of high performance and low alloying titanium alloys through constructing multi-task models between alloy composition, deformation mechanism and resultant properties.

Abstract Image

β型钛合金的成分-变形机制-性能机器学习模型
在结合变形孪晶的同时最大限度地提高固溶硬化是同时提高其强度和延展性的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Plasticity
International Journal of Plasticity 工程技术-材料科学:综合
CiteScore
15.30
自引率
26.50%
发文量
256
审稿时长
46 days
期刊介绍: International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena. Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信