Harmonic Morphisms and Minimal Conformal Foliations on Lie Groups

IF 0.7 3区 数学 Q3 MATHEMATICS
Sigmundur Gudmundsson, Thomas Jack Munn
{"title":"Harmonic Morphisms and Minimal Conformal Foliations on Lie Groups","authors":"Sigmundur Gudmundsson,&nbsp;Thomas Jack Munn","doi":"10.1007/s10455-025-10015-2","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be a Lie group equipped with a left-invariant Riemannian metric. Let <i>K</i> be a semisimple and normal subgroup of <i>G</i> generating a left-invariant conformal foliation <span>\\(\\mathcal {F}\\)</span> on <i>G</i>. We then show that the foliation <span>\\(\\mathcal {F}\\)</span> is Riemannian and minimal. This means that locally the leaves of <span>\\(\\mathcal {F}\\)</span> are fibres of a harmonic morphism. We also prove that if the metric restricted to <i>K</i> is biinvariant then <span>\\(\\mathcal {F}\\)</span> is totally geodesic.</p></div>","PeriodicalId":8268,"journal":{"name":"Annals of Global Analysis and Geometry","volume":"68 2","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-025-10015-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Global Analysis and Geometry","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-025-10015-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a Lie group equipped with a left-invariant Riemannian metric. Let K be a semisimple and normal subgroup of G generating a left-invariant conformal foliation \(\mathcal {F}\) on G. We then show that the foliation \(\mathcal {F}\) is Riemannian and minimal. This means that locally the leaves of \(\mathcal {F}\) are fibres of a harmonic morphism. We also prove that if the metric restricted to K is biinvariant then \(\mathcal {F}\) is totally geodesic.

李群上的调和态射与极小共形叶
设G是具有左不变黎曼度规的李群。设K是G的半简单正规子群,在G上产生一个左不变保形叶形\(\mathcal {F}\),然后证明该叶形\(\mathcal {F}\)是黎曼极小的。这意味着\(\mathcal {F}\)的叶子在局部是谐波态射的纤维。我们也证明了如果限定于K的度规是双不变的,那么\(\mathcal {F}\)是完全测地线的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
70
审稿时长
6-12 weeks
期刊介绍: This journal examines global problems of geometry and analysis as well as the interactions between these fields and their application to problems of theoretical physics. It contributes to an enlargement of the international exchange of research results in the field. The areas covered in Annals of Global Analysis and Geometry include: global analysis, differential geometry, complex manifolds and related results from complex analysis and algebraic geometry, Lie groups, Lie transformation groups and harmonic analysis, variational calculus, applications of differential geometry and global analysis to problems of theoretical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信