Local invariants and geometry of the sub-Laplacian on H-type foliations

IF 1.3 2区 数学 Q1 MATHEMATICS
Wolfram Bauer , Irina Markina , Abdellah Laaroussi , Sylvie Vega-Molino
{"title":"Local invariants and geometry of the sub-Laplacian on H-type foliations","authors":"Wolfram Bauer ,&nbsp;Irina Markina ,&nbsp;Abdellah Laaroussi ,&nbsp;Sylvie Vega-Molino","doi":"10.1016/j.na.2025.113934","DOIUrl":null,"url":null,"abstract":"<div><div><span><math><mi>H</mi></math></span>-type foliations <span><math><mrow><mo>(</mo><mi>M</mi><mo>,</mo><mi>H</mi><mo>,</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>H</mi></mrow></msub><mo>)</mo></mrow></math></span> are studied in the framework of sub-Riemannian geometry with bracket generating distribution defined as the bundle transversal to the fibers. Equipping <span><math><mi>M</mi></math></span> with the Bott connection we consider the scalar horizontal curvature <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>H</mi></mrow></msub></math></span> as well as a new local invariant <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>V</mi></mrow></msub></math></span> induced from the vertical distribution. We extend recent results on the small-time asymptotics of the sub-Riemannian heat kernel on quaternion-contact (qc-)manifolds due to A. Laaroussi and we express the second heat invariant in sub-Riemannian geometry as a linear combination of <span><math><msub><mrow><mi>κ</mi></mrow><mrow><mi>H</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>τ</mi></mrow><mrow><mi>V</mi></mrow></msub></math></span>. The use of an analog to normal coordinates in Riemannian geometry that are well-adapted to the geometric structure of <span><math><mi>H</mi></math></span>-type foliations allows us to consider the pull-back of Korányi balls to <span><math><mi>M</mi></math></span>. We explicitly obtain the first three terms in the asymptotic expansion of their Popp volume for small radii. Finally, we address the question of when <span><math><mi>M</mi></math></span> is locally isometric as a sub-Riemannian manifold to its <span><math><mi>H</mi></math></span>-type tangent group.</div></div>","PeriodicalId":49749,"journal":{"name":"Nonlinear Analysis-Theory Methods & Applications","volume":"262 ","pages":"Article 113934"},"PeriodicalIF":1.3000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Theory Methods & Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X25001865","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

H-type foliations (M,H,gH) are studied in the framework of sub-Riemannian geometry with bracket generating distribution defined as the bundle transversal to the fibers. Equipping M with the Bott connection we consider the scalar horizontal curvature κH as well as a new local invariant τV induced from the vertical distribution. We extend recent results on the small-time asymptotics of the sub-Riemannian heat kernel on quaternion-contact (qc-)manifolds due to A. Laaroussi and we express the second heat invariant in sub-Riemannian geometry as a linear combination of κH and τV. The use of an analog to normal coordinates in Riemannian geometry that are well-adapted to the geometric structure of H-type foliations allows us to consider the pull-back of Korányi balls to M. We explicitly obtain the first three terms in the asymptotic expansion of their Popp volume for small radii. Finally, we address the question of when M is locally isometric as a sub-Riemannian manifold to its H-type tangent group.
h型叶理上的局部不变量和次拉普拉斯算子的几何性质
在亚黎曼几何框架下研究了H型叶理(M,H,gH),其支架生成分布定义为束与纤维的横向分布。将M与Bott连接结合,考虑标量水平曲率κH和由垂直分布导出的新的局部不变量τV。我们推广了最近关于四元数-接触流形(qc-)上热核的小时渐近性的结果,并将其第二热不变量表示为κH和τV的线性组合。在黎曼几何中使用一种很好地适应于h型叶的几何结构的法向坐标的类比,使我们能够考虑Korányi球对m的回拉。我们明确地得到了它们的Popp体积在小半径下的渐近展开中的前三项。最后,我们讨论了M作为其h型切群的子黎曼流形的局部等距问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
0.00%
发文量
265
审稿时长
60 days
期刊介绍: Nonlinear Analysis focuses on papers that address significant problems in Nonlinear Analysis that have a sustainable and important impact on the development of new directions in the theory as well as potential applications. Review articles on important topics in Nonlinear Analysis are welcome as well. In particular, only papers within the areas of specialization of the Editorial Board Members will be considered. Authors are encouraged to check the areas of expertise of the Editorial Board in order to decide whether or not their papers are appropriate for this journal. The journal aims to apply very high standards in accepting papers for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信