Jieming Chen , Yiwei Wu , Yue Zhou , Edward Chung , Shuaian Wang
{"title":"Solving connected automated vehicle merging problems: A generalized benders decomposition-based approach for mixed-integer nonlinear programming","authors":"Jieming Chen , Yiwei Wu , Yue Zhou , Edward Chung , Shuaian Wang","doi":"10.1016/j.trb.2025.103293","DOIUrl":null,"url":null,"abstract":"<div><div>Intensive interactions among vehicles often lead to congestion and accidents, particularly at freeway merging sections. As connected automated vehicles (CAVs) become a reality, their collaborative driving offers a promising solution. However, the real-time scheduling and trajectory planning for multiple CAV streams remain challenging and are not adequately addressed in the existing literature. To this end, this study formulates an integrated mixed-integer nonlinear programming (MINLP) model to jointly optimize lane change decisions, vehicle sequences, and vehicle trajectories, with the objective of maximizing traffic efficiency and driving comfort at multi-lane freeway merging sections. Existing commercial software struggles to handle such a complicated model. To rapidly obtain solutions, this study designs a Generalized Benders Decomposition (GBD)-based solution algorithm to tackle the problem of multi-vehicle combinatorial optimization and nonlinear trajectory optimization. Meanwhile, the finite convergence property of the GBD approach is proved. Numerical experimental results demonstrate that the proposed model outperforms three benchmark CAV control methods and a two-step method under various traffic demands and mainline-ramp demand ratios, highlighting significant traffic benefits from jointly planning lane changes and driving sequences, as well as utilizing microscopic vehicle information. Furthermore, this study evaluates traffic delay and the number of lane changes under varying road lengths, i.e., the lengths of lane-changing and merging areas, identifying recommended lengths for the maximum traffic efficiency, and analyzing the performance trend under varying traffic demands.</div></div>","PeriodicalId":54418,"journal":{"name":"Transportation Research Part B-Methodological","volume":"200 ","pages":"Article 103293"},"PeriodicalIF":6.3000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part B-Methodological","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191261525001420","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Intensive interactions among vehicles often lead to congestion and accidents, particularly at freeway merging sections. As connected automated vehicles (CAVs) become a reality, their collaborative driving offers a promising solution. However, the real-time scheduling and trajectory planning for multiple CAV streams remain challenging and are not adequately addressed in the existing literature. To this end, this study formulates an integrated mixed-integer nonlinear programming (MINLP) model to jointly optimize lane change decisions, vehicle sequences, and vehicle trajectories, with the objective of maximizing traffic efficiency and driving comfort at multi-lane freeway merging sections. Existing commercial software struggles to handle such a complicated model. To rapidly obtain solutions, this study designs a Generalized Benders Decomposition (GBD)-based solution algorithm to tackle the problem of multi-vehicle combinatorial optimization and nonlinear trajectory optimization. Meanwhile, the finite convergence property of the GBD approach is proved. Numerical experimental results demonstrate that the proposed model outperforms three benchmark CAV control methods and a two-step method under various traffic demands and mainline-ramp demand ratios, highlighting significant traffic benefits from jointly planning lane changes and driving sequences, as well as utilizing microscopic vehicle information. Furthermore, this study evaluates traffic delay and the number of lane changes under varying road lengths, i.e., the lengths of lane-changing and merging areas, identifying recommended lengths for the maximum traffic efficiency, and analyzing the performance trend under varying traffic demands.
期刊介绍:
Transportation Research: Part B publishes papers on all methodological aspects of the subject, particularly those that require mathematical analysis. The general theme of the journal is the development and solution of problems that are adequately motivated to deal with important aspects of the design and/or analysis of transportation systems. Areas covered include: traffic flow; design and analysis of transportation networks; control and scheduling; optimization; queuing theory; logistics; supply chains; development and application of statistical, econometric and mathematical models to address transportation problems; cost models; pricing and/or investment; traveler or shipper behavior; cost-benefit methodologies.