Verification of multi-scale coupling program for high temperature gas-cooled reactor based on metamorphic testing

IF 2.3 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY
Yin Zhao , Meng Li , Ke Zhang , Xiaohua Yang , Jie Liu , Shiyu Yan
{"title":"Verification of multi-scale coupling program for high temperature gas-cooled reactor based on metamorphic testing","authors":"Yin Zhao ,&nbsp;Meng Li ,&nbsp;Ke Zhang ,&nbsp;Xiaohua Yang ,&nbsp;Jie Liu ,&nbsp;Shiyu Yan","doi":"10.1016/j.anucene.2025.111846","DOIUrl":null,"url":null,"abstract":"<div><div>The multi-scale coupling program for high temperature gas-cooled reactors encompasses complex physical phenomena across the microscopic, mesoscopic, and macroscopic level. Owing to the significant development expenses and the complexity of forming precise analytical solutions, making traditional testing methods invalid, verifying multi-scale codes is hindered by the oracle problem. Metamorphic testing is an effective technique to alleviate the oracle problem. This study uses a two-stage verification method grounded in metamorphic relations, following the introduction of code verification in the nuclear domain. Upon identifying 13 metamorphic relations and 1 property based on fundamental physical characteristics, 87 test case pairs successfully revealed two deeply hidden faults undetected by traditional testing methods. The experimental findings indicate that metamorphic testing serves both as a mechanism to evaluate the code correctness and as a technique to increase the number of verification cases. Furthermore, it presents great potential for applications in the verification of nuclear software.</div></div>","PeriodicalId":8006,"journal":{"name":"Annals of Nuclear Energy","volume":"226 ","pages":"Article 111846"},"PeriodicalIF":2.3000,"publicationDate":"2025-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Nuclear Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306454925006632","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The multi-scale coupling program for high temperature gas-cooled reactors encompasses complex physical phenomena across the microscopic, mesoscopic, and macroscopic level. Owing to the significant development expenses and the complexity of forming precise analytical solutions, making traditional testing methods invalid, verifying multi-scale codes is hindered by the oracle problem. Metamorphic testing is an effective technique to alleviate the oracle problem. This study uses a two-stage verification method grounded in metamorphic relations, following the introduction of code verification in the nuclear domain. Upon identifying 13 metamorphic relations and 1 property based on fundamental physical characteristics, 87 test case pairs successfully revealed two deeply hidden faults undetected by traditional testing methods. The experimental findings indicate that metamorphic testing serves both as a mechanism to evaluate the code correctness and as a technique to increase the number of verification cases. Furthermore, it presents great potential for applications in the verification of nuclear software.
基于变质试验的高温气冷堆多尺度耦合程序验证
高温气冷堆的多尺度耦合程序包括微观、介观和宏观层面的复杂物理现象。由于大量的开发费用和形成精确解析解的复杂性,使得传统的测试方法无效,多尺度代码的验证受到oracle问题的阻碍。变形测试是一种缓解oracle问题的有效技术。本研究采用了一种基于变质关系的两阶段验证方法,在核域引入了代码验证。在基于基本物理特征识别13种变质关系和1种性质的基础上,87对测试用例成功地揭示了传统测试方法无法检测到的两个深隐故障。实验结果表明,变形测试既是一种评估代码正确性的机制,也是一种增加验证案例数量的技术。此外,它在核软件的验证中具有很大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Nuclear Energy
Annals of Nuclear Energy 工程技术-核科学技术
CiteScore
4.30
自引率
21.10%
发文量
632
审稿时长
7.3 months
期刊介绍: Annals of Nuclear Energy provides an international medium for the communication of original research, ideas and developments in all areas of the field of nuclear energy science and technology. Its scope embraces nuclear fuel reserves, fuel cycles and cost, materials, processing, system and component technology (fission only), design and optimization, direct conversion of nuclear energy sources, environmental control, reactor physics, heat transfer and fluid dynamics, structural analysis, fuel management, future developments, nuclear fuel and safety, nuclear aerosol, neutron physics, computer technology (both software and hardware), risk assessment, radioactive waste disposal and reactor thermal hydraulics. Papers submitted to Annals need to demonstrate a clear link to nuclear power generation/nuclear engineering. Papers which deal with pure nuclear physics, pure health physics, imaging, or attenuation and shielding properties of concretes and various geological materials are not within the scope of the journal. Also, papers that deal with policy or economics are not within the scope of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信