Velocity-vorticity-pressure mixed formulation for the Kelvin–Voigt–Brinkman–Forchheimer equations

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Sergio Caucao, Ivan Yotov
{"title":"Velocity-vorticity-pressure mixed formulation for the Kelvin–Voigt–Brinkman–Forchheimer equations","authors":"Sergio Caucao, Ivan Yotov","doi":"10.1093/imanum/draf072","DOIUrl":null,"url":null,"abstract":"In this paper, we propose and analyze a mixed formulation for the Kelvin–Voigt–Brinkman–Forchheimer equations for unsteady viscoelastic flows in porous media. Besides the velocity and pressure, our approach introduces the vorticity as a further unknown. Consequently, we obtain a three-field mixed variational formulation, where the aforementioned variables are the main unknowns of the system. We establish the existence and uniqueness of a solution for the weak formulation, and derive the corresponding stability bounds, employing a fixed-point strategy, along with monotone operators theory and Schauder theorem. Afterwards, we introduce a semidiscrete continuous-in-time approximation based on stable Stokes elements for the velocity and pressure, and continuous or discontinuous piecewise polynomial spaces for the vorticity. Additionally, employing backward Euler time discretization, we introduce a fully discrete finite element scheme. We prove well-posedness, derive stability bounds and establish the corresponding error estimates for both schemes. We provide several numerical results verifying the theoretical rates of convergence and illustrating the performance and flexibility of the method for a range of domain configurations and model parameters.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"38 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf072","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose and analyze a mixed formulation for the Kelvin–Voigt–Brinkman–Forchheimer equations for unsteady viscoelastic flows in porous media. Besides the velocity and pressure, our approach introduces the vorticity as a further unknown. Consequently, we obtain a three-field mixed variational formulation, where the aforementioned variables are the main unknowns of the system. We establish the existence and uniqueness of a solution for the weak formulation, and derive the corresponding stability bounds, employing a fixed-point strategy, along with monotone operators theory and Schauder theorem. Afterwards, we introduce a semidiscrete continuous-in-time approximation based on stable Stokes elements for the velocity and pressure, and continuous or discontinuous piecewise polynomial spaces for the vorticity. Additionally, employing backward Euler time discretization, we introduce a fully discrete finite element scheme. We prove well-posedness, derive stability bounds and establish the corresponding error estimates for both schemes. We provide several numerical results verifying the theoretical rates of convergence and illustrating the performance and flexibility of the method for a range of domain configurations and model parameters.
Kelvin-Voigt-Brinkman-Forchheimer方程的速度-涡度-压力混合公式
本文提出并分析了多孔介质中非定常粘弹性流动的Kelvin-Voigt-Brinkman-Forchheimer方程的混合公式。除了速度和压力,我们的方法引入了涡度作为一个进一步的未知。因此,我们得到一个三场混合变分公式,其中上述变量是系统的主要未知数。利用单调算子理论和Schauder定理,利用不动点策略,建立了弱公式解的存在唯一性,并导出了相应的稳定性界。然后,我们引入了基于稳定Stokes单元的速度和压力的半离散连续时间逼近,以及基于连续或不连续分段多项式空间的涡度逼近。此外,我们利用向后欧拉时间离散,引入了一个完全离散的有限元格式。证明了两种方案的适定性,导出了稳定性界,并建立了相应的误差估计。我们提供了几个数值结果来验证理论的收敛速度,并说明了该方法在一系列域配置和模型参数下的性能和灵活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信