Optimal convergence in finite element semidiscrete error analysis of the Doyle–Fuller–Newman model beyond one dimension with a novel projection operator

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Shu Xu, Liqun Cao
{"title":"Optimal convergence in finite element semidiscrete error analysis of the Doyle–Fuller–Newman model beyond one dimension with a novel projection operator","authors":"Shu Xu, Liqun Cao","doi":"10.1093/imanum/draf065","DOIUrl":null,"url":null,"abstract":"We present a finite element semidiscrete error analysis for the Doyle–Fuller–Newman model, which is the most popular model for lithium-ion batteries. Central to our approach is a novel projection operator designed for the pseudo-($N$+1)-dimensional equation, offering a powerful tool for multiscale equation analysis. Our results bridge a gap in the analysis for dimensions $2 \\le N \\le 3$ and achieve optimal convergence rates of $h+(\\varDelta r)^{2}$. Additionally, we perform a detailed numerical verification, marking the first such validation in this context. By avoiding the change of variables our error analysis can also be extended beyond isothermal conditions.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"9 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf065","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We present a finite element semidiscrete error analysis for the Doyle–Fuller–Newman model, which is the most popular model for lithium-ion batteries. Central to our approach is a novel projection operator designed for the pseudo-($N$+1)-dimensional equation, offering a powerful tool for multiscale equation analysis. Our results bridge a gap in the analysis for dimensions $2 \le N \le 3$ and achieve optimal convergence rates of $h+(\varDelta r)^{2}$. Additionally, we perform a detailed numerical verification, marking the first such validation in this context. By avoiding the change of variables our error analysis can also be extended beyond isothermal conditions.
一种新的投影算子在一维以外的Doyle-Fuller-Newman模型有限元半离散误差分析中的最优收敛性
本文对锂离子电池最常用的模型Doyle-Fuller-Newman模型进行了有限元半离散误差分析。该方法的核心是为伪($N$+1)维方程设计的一种新的投影算子,为多尺度方程分析提供了一个强大的工具。我们的结果弥补了维度$2 \le N \le 3$的分析空白,并实现了$h+(\varDelta r)^{2}$的最佳收敛率。此外,我们执行了详细的数值验证,标志着这种情况下的第一次验证。通过避免变量的变化,我们的误差分析也可以扩展到等温条件之外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信