Long-time asymptotics for the massive Thirring model on the half-line

IF 2.9 3区 数学 Q1 MATHEMATICS, APPLIED
Xumeng Zhou, Xianguo Geng, Mingming Chen
{"title":"Long-time asymptotics for the massive Thirring model on the half-line","authors":"Xumeng Zhou,&nbsp;Xianguo Geng,&nbsp;Mingming Chen","doi":"10.1016/j.physd.2025.134877","DOIUrl":null,"url":null,"abstract":"<div><div>The asymptotic formula for the solution of the massive Thirring model on the half-line <span><math><mrow><mi>x</mi><mo>≥</mo><mn>0</mn></mrow></math></span> is derived under the assumption that the initial and boundary values lie in Schwartz space. It is shown that the solution of the massive Thirring model can represented by the solution of the derived matrix Riemann–Hilbert problem. The relevant jump matrices are explicitly given in the form of the matrix-valued spectral functions that depend on the initial data and boundary values. By applying the nonlinear steepest descent analysis of two related Riemann–Hilbert problems, one for the spectral parameter at the origin and the other for the spectral parameter at infinity, the explicit long-time asymptotic formula and uniform error estimates for the solution of the massive Thirring model are given on the half-line.</div></div>","PeriodicalId":20050,"journal":{"name":"Physica D: Nonlinear Phenomena","volume":"482 ","pages":"Article 134877"},"PeriodicalIF":2.9000,"publicationDate":"2025-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica D: Nonlinear Phenomena","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167278925003549","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The asymptotic formula for the solution of the massive Thirring model on the half-line x0 is derived under the assumption that the initial and boundary values lie in Schwartz space. It is shown that the solution of the massive Thirring model can represented by the solution of the derived matrix Riemann–Hilbert problem. The relevant jump matrices are explicitly given in the form of the matrix-valued spectral functions that depend on the initial data and boundary values. By applying the nonlinear steepest descent analysis of two related Riemann–Hilbert problems, one for the spectral parameter at the origin and the other for the spectral parameter at infinity, the explicit long-time asymptotic formula and uniform error estimates for the solution of the massive Thirring model are given on the half-line.
半线上大质量Thirring模型的长期渐近性
在初始值和边值位于Schwartz空间的假设下,导出了大质量Thirring模型在x≥0半线上解的渐近公式。结果表明,大质量Thirring模型的解可以用导出矩阵Riemann-Hilbert问题的解来表示。相关的跳跃矩阵以依赖于初始数据和边界值的矩阵值谱函数的形式显式给出。通过对两个相关的Riemann-Hilbert问题的非线性最陡下降分析,一个是在原点处的谱参数问题,另一个是在无穷远处的谱参数问题,在半线上给出了大质量Thirring模型解的显式长时间渐近公式和一致误差估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica D: Nonlinear Phenomena
Physica D: Nonlinear Phenomena 物理-物理:数学物理
CiteScore
7.30
自引率
7.50%
发文量
213
审稿时长
65 days
期刊介绍: Physica D (Nonlinear Phenomena) publishes research and review articles reporting on experimental and theoretical works, techniques and ideas that advance the understanding of nonlinear phenomena. Topics encompass wave motion in physical, chemical and biological systems; physical or biological phenomena governed by nonlinear field equations, including hydrodynamics and turbulence; pattern formation and cooperative phenomena; instability, bifurcations, chaos, and space-time disorder; integrable/Hamiltonian systems; asymptotic analysis and, more generally, mathematical methods for nonlinear systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信