QROP: Quantum Learning-Based Identification of Retinopathy of Prematurity

IF 2.8 Q3 QUANTUM SCIENCE & TECHNOLOGY
Debashis De, Mahua Nandy Pal, Dipankar Hazra
{"title":"QROP: Quantum Learning-Based Identification of Retinopathy of Prematurity","authors":"Debashis De,&nbsp;Mahua Nandy Pal,&nbsp;Dipankar Hazra","doi":"10.1049/qtc2.70008","DOIUrl":null,"url":null,"abstract":"<p>Retinopathy of prematurity (ROP) is a serious eye disease for premature infants. One of the main reasons for ROP is the use of oxygen for prolonged periods. In ROP, the abnormal blood vessels extend into the vitreous, the gel-like substance, and the retina may become partially detached with the formation of a ridge. Early detection and treatment of ROP are important to prevent blindness. This work aims (i) to classify normal and ROP-affected retinal images using a quantum neural network (QNN) and (ii) to compare the performance of the proposed quantum ROP (QROP) system with the existing ROP identification methods. QROP uses the HVDROPDB dataset fundus images of preterm infants. These images are captured using RetCam and Neo imaging devices. Only 15 parameters and a few samples extracted from the database were used for model training to achieve desirable evaluation metrics of accuracy, precision, sensitivity, F1-score and specificity. The proposed system achieves 97.06% accuracy with the HVDROPDB Neo dataset, 91.18% accuracy with the HVDROPDB RetCam dataset, and 85.29% accuracy when evaluated on the images from variable imaging devices and of different resolutions.</p>","PeriodicalId":100651,"journal":{"name":"IET Quantum Communication","volume":"6 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/qtc2.70008","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Quantum Communication","FirstCategoryId":"1085","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/qtc2.70008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Retinopathy of prematurity (ROP) is a serious eye disease for premature infants. One of the main reasons for ROP is the use of oxygen for prolonged periods. In ROP, the abnormal blood vessels extend into the vitreous, the gel-like substance, and the retina may become partially detached with the formation of a ridge. Early detection and treatment of ROP are important to prevent blindness. This work aims (i) to classify normal and ROP-affected retinal images using a quantum neural network (QNN) and (ii) to compare the performance of the proposed quantum ROP (QROP) system with the existing ROP identification methods. QROP uses the HVDROPDB dataset fundus images of preterm infants. These images are captured using RetCam and Neo imaging devices. Only 15 parameters and a few samples extracted from the database were used for model training to achieve desirable evaluation metrics of accuracy, precision, sensitivity, F1-score and specificity. The proposed system achieves 97.06% accuracy with the HVDROPDB Neo dataset, 91.18% accuracy with the HVDROPDB RetCam dataset, and 85.29% accuracy when evaluated on the images from variable imaging devices and of different resolutions.

Abstract Image

Abstract Image

Abstract Image

QROP:基于量子学习的早产儿视网膜病变识别
早产儿视网膜病变(ROP)是一种严重的早产儿眼病。机械钻速的主要原因之一是长时间使用氧气。在ROP中,异常血管延伸到玻璃体,凝胶状物质,视网膜可能部分脱离并形成脊状。早期发现和治疗ROP对预防失明至关重要。这项工作的目的是(i)使用量子神经网络(QNN)对正常和受ROP影响的视网膜图像进行分类;(ii)将所提出的量子ROP (QROP)系统的性能与现有的ROP识别方法进行比较。QROP使用HVDROPDB数据集早产儿眼底图像。这些图像是使用RetCam和Neo成像设备捕获的。仅使用数据库中提取的15个参数和少量样本进行模型训练,即可获得准确度、精密度、灵敏度、f1评分和特异性等理想的评价指标。该系统在HVDROPDB Neo数据集上的准确率为97.06%,在HVDROPDB RetCam数据集上的准确率为91.18%,在不同成像设备和不同分辨率的图像上的准确率为85.29%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信