Optimal relevant subset designs in nonlinear models

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Adam Lane
{"title":"Optimal relevant subset designs in nonlinear models","authors":"Adam Lane","doi":"10.1002/cjs.70004","DOIUrl":null,"url":null,"abstract":"<p>It is well known that certain ancillary statistics form a relevant subset, a subset of the sample space on which inference should be restricted, and that conditioning on such ancillary statistics reduces the dimension of the data without a loss of information. The use of ancillary statistics in post-data inference has received significant attention; however, their role in the design of experiments has not been well characterized. Ancillary statistics are not known prior to data collection and as a result cannot be incorporated into the design a priori. Conversely, in sequential experiments the ancillary statistics based on the data from the preceding observations are known and can be used to determine the design assignment of the current observation. The main results of this work describe the benefits of incorporating ancillary statistics, specifically the ancillary statistic that constitutes a relevant subset, into adaptive designs.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":"53 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.70004","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

It is well known that certain ancillary statistics form a relevant subset, a subset of the sample space on which inference should be restricted, and that conditioning on such ancillary statistics reduces the dimension of the data without a loss of information. The use of ancillary statistics in post-data inference has received significant attention; however, their role in the design of experiments has not been well characterized. Ancillary statistics are not known prior to data collection and as a result cannot be incorporated into the design a priori. Conversely, in sequential experiments the ancillary statistics based on the data from the preceding observations are known and can be used to determine the design assignment of the current observation. The main results of this work describe the benefits of incorporating ancillary statistics, specifically the ancillary statistic that constitutes a relevant subset, into adaptive designs.

非线性模型中相关子集的优化设计
众所周知,某些辅助统计数据形成了一个相关的子集,一个应该限制推理的样本空间的子集,并且对这些辅助统计数据进行调节可以在不丢失信息的情况下降低数据的维数。在数据后推断中使用辅助统计数据已经受到了极大的关注;然而,它们在实验设计中的作用尚未得到很好的描述。辅助统计数据在数据收集之前是未知的,因此不能将其纳入先验设计。相反,在顺序实验中,基于先前观测数据的辅助统计量是已知的,可以用来确定当前观测的设计分配。这项工作的主要结果描述了将辅助统计数据,特别是构成相关子集的辅助统计数据纳入自适应设计的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
62
审稿时长
>12 weeks
期刊介绍: The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics. The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信