{"title":"Mapping quantum industry demands to education: a critical analysis of skills, qualifications, and modalities","authors":"Shalini Devendrababu, Srinjoy Ganguly, Kannan Hemachandran","doi":"10.1140/epjqt/s40507-025-00406-6","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum technologies and computing are an emerging area which offers a new paradigm to solve complex problems using the principles of quantum mechanics, where classical computing faces limits. Due to the advantages of quantum computers, today, there are several industries focusing on different aspects of quantum technologies based on their physics to explore the most efficient and useful platform for implementing applications. Since the scope of the quantum companies is diverse, it is important to understand the education, skills, and qualifications required for different job roles, as this will aid global educational institutions in constructing concentrated disciplines in this field. This paper provides a detailed critical analysis of different job descriptions for education, skills and qualifications. Most of the qubit modalities, such as superconducting, semiconducting, topological, nitrogen-vacancy centres, ion-traps, neutral atoms, and photonics, have been covered. Additionally, quantum software domains such as quantum machine learning, cryptography and error corrections have been discussed with fields such as quantum sensors and metrology. Finally, based on the patterns, recommendations are given to enable better preparation of skills and infrastructure for educational institutes and individuals who would like to pursue a career in the field of quantum technologies.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00406-6","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00406-6","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum technologies and computing are an emerging area which offers a new paradigm to solve complex problems using the principles of quantum mechanics, where classical computing faces limits. Due to the advantages of quantum computers, today, there are several industries focusing on different aspects of quantum technologies based on their physics to explore the most efficient and useful platform for implementing applications. Since the scope of the quantum companies is diverse, it is important to understand the education, skills, and qualifications required for different job roles, as this will aid global educational institutions in constructing concentrated disciplines in this field. This paper provides a detailed critical analysis of different job descriptions for education, skills and qualifications. Most of the qubit modalities, such as superconducting, semiconducting, topological, nitrogen-vacancy centres, ion-traps, neutral atoms, and photonics, have been covered. Additionally, quantum software domains such as quantum machine learning, cryptography and error corrections have been discussed with fields such as quantum sensors and metrology. Finally, based on the patterns, recommendations are given to enable better preparation of skills and infrastructure for educational institutes and individuals who would like to pursue a career in the field of quantum technologies.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.