Mapping quantum industry demands to education: a critical analysis of skills, qualifications, and modalities

IF 5.6 2区 物理与天体物理 Q1 OPTICS
Shalini Devendrababu, Srinjoy Ganguly, Kannan Hemachandran
{"title":"Mapping quantum industry demands to education: a critical analysis of skills, qualifications, and modalities","authors":"Shalini Devendrababu,&nbsp;Srinjoy Ganguly,&nbsp;Kannan Hemachandran","doi":"10.1140/epjqt/s40507-025-00406-6","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum technologies and computing are an emerging area which offers a new paradigm to solve complex problems using the principles of quantum mechanics, where classical computing faces limits. Due to the advantages of quantum computers, today, there are several industries focusing on different aspects of quantum technologies based on their physics to explore the most efficient and useful platform for implementing applications. Since the scope of the quantum companies is diverse, it is important to understand the education, skills, and qualifications required for different job roles, as this will aid global educational institutions in constructing concentrated disciplines in this field. This paper provides a detailed critical analysis of different job descriptions for education, skills and qualifications. Most of the qubit modalities, such as superconducting, semiconducting, topological, nitrogen-vacancy centres, ion-traps, neutral atoms, and photonics, have been covered. Additionally, quantum software domains such as quantum machine learning, cryptography and error corrections have been discussed with fields such as quantum sensors and metrology. Finally, based on the patterns, recommendations are given to enable better preparation of skills and infrastructure for educational institutes and individuals who would like to pursue a career in the field of quantum technologies.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00406-6","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00406-6","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum technologies and computing are an emerging area which offers a new paradigm to solve complex problems using the principles of quantum mechanics, where classical computing faces limits. Due to the advantages of quantum computers, today, there are several industries focusing on different aspects of quantum technologies based on their physics to explore the most efficient and useful platform for implementing applications. Since the scope of the quantum companies is diverse, it is important to understand the education, skills, and qualifications required for different job roles, as this will aid global educational institutions in constructing concentrated disciplines in this field. This paper provides a detailed critical analysis of different job descriptions for education, skills and qualifications. Most of the qubit modalities, such as superconducting, semiconducting, topological, nitrogen-vacancy centres, ion-traps, neutral atoms, and photonics, have been covered. Additionally, quantum software domains such as quantum machine learning, cryptography and error corrections have been discussed with fields such as quantum sensors and metrology. Finally, based on the patterns, recommendations are given to enable better preparation of skills and infrastructure for educational institutes and individuals who would like to pursue a career in the field of quantum technologies.

将量子产业需求映射到教育:对技能、资格和模式的批判性分析
量子技术和计算是一个新兴的领域,它提供了一个新的范例来解决复杂的问题,利用量子力学的原理,经典计算面临的限制。由于量子计算机的优势,今天,有几个行业根据其物理特性专注于量子技术的不同方面,以探索实现应用的最有效和最有用的平台。由于量子公司的范围是多种多样的,了解不同工作角色所需的教育、技能和资格是很重要的,因为这将有助于全球教育机构在该领域建立集中的学科。本文对教育、技能和资格的不同职位描述进行了详细的批判性分析。大多数量子比特模态,如超导、半导体、拓扑、氮空位中心、离子阱、中性原子和光子学,已经被涵盖。此外,量子软件领域,如量子机器学习,密码学和纠错已经与量子传感器和计量学等领域进行了讨论。最后,基于这些模式,给出了建议,以便为希望在量子技术领域从事职业的教育机构和个人更好地准备技能和基础设施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EPJ Quantum Technology
EPJ Quantum Technology Physics and Astronomy-Atomic and Molecular Physics, and Optics
CiteScore
7.70
自引率
7.50%
发文量
28
审稿时长
71 days
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following: Quantum measurement, metrology and lithography Quantum complex systems, networks and cellular automata Quantum electromechanical systems Quantum optomechanical systems Quantum machines, engineering and nanorobotics Quantum control theory Quantum information, communication and computation Quantum thermodynamics Quantum metamaterials The effect of Casimir forces on micro- and nano-electromechanical systems Quantum biology Quantum sensing Hybrid quantum systems Quantum simulations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信