Lyapunov exponent for quantum graphs coded as elements of a subshift of finite type

IF 1.6 3区 数学 Q1 MATHEMATICS
Oleg Safronov
{"title":"Lyapunov exponent for quantum graphs coded as elements of a subshift of finite type","authors":"Oleg Safronov","doi":"10.1007/s13324-025-01122-1","DOIUrl":null,"url":null,"abstract":"<div><p>We consider the Schrödinger operator on the quantum graph whose edges connect the points of <span>\\({{\\mathbb {Z}}}\\)</span>. The numbers of the edges connecting two consecutive points <i>n</i> and <span>\\(n+1\\)</span> are read along the orbits of a shift of finite type. We prove that the Lyapunov exponent is potitive for energies <i>E</i> that do not belong to a discrete subset of <span>\\([0,\\infty )\\)</span>. The number of points <i>E</i> of this subset in <span>\\([(\\pi (j-1))^2, (\\pi j)^2]\\)</span> is the same for all <span>\\(j\\in {{\\mathbb {N}}}\\)</span>.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-025-01122-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01122-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the Schrödinger operator on the quantum graph whose edges connect the points of \({{\mathbb {Z}}}\). The numbers of the edges connecting two consecutive points n and \(n+1\) are read along the orbits of a shift of finite type. We prove that the Lyapunov exponent is potitive for energies E that do not belong to a discrete subset of \([0,\infty )\). The number of points E of this subset in \([(\pi (j-1))^2, (\pi j)^2]\) is the same for all \(j\in {{\mathbb {N}}}\).

编码为有限型子移元素的量子图的Lyapunov指数
我们考虑量子图上的Schrödinger算子,其边连接的点 \({{\mathbb {Z}}}\). 连接两个连续点n和的边的个数 \(n+1\) 是沿着有限型移位的轨道读取的。我们证明了李雅普诺夫指数对于能量E是正的,当能量E不属于 \([0,\infty )\). 这个子集中点E的个数 \([(\pi (j-1))^2, (\pi j)^2]\) 对所有人都一样吗 \(j\in {{\mathbb {N}}}\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信