DiffCoR: Exposing AI-Generated Image by Using Stable Diffusion Model Based on Consistent Representation Learning

Van-Nhan Tran;Piljoo Choi;Hoanh-Su Le;Suk-Hwan Lee;Ki-Ryong Kwon
{"title":"DiffCoR: Exposing AI-Generated Image by Using Stable Diffusion Model Based on Consistent Representation Learning","authors":"Van-Nhan Tran;Piljoo Choi;Hoanh-Su Le;Suk-Hwan Lee;Ki-Ryong Kwon","doi":"10.1109/OJCS.2025.3575507","DOIUrl":null,"url":null,"abstract":"Diffusion-based generative models have significantly advanced the field of image synthesis, presenting additional challenges regarding the integrity and authenticity of digital images. Consequently, the identification of AI-generated images has become a critical problem in image forensics. However, there is a lack of literature addressing the detection of images generated by diffusion models. In this article, our focus is on developing a model capable of detecting images generated through both GAN techniques and diffusion models. We propose DiffCoR, a novel detection method for identifying AI-generated images. It consists of two main modules: Stable Diffusion Processing (SDP) and Image Representation Learning (IRL). The SDP module uses a pre-trained Stable Diffusion model to reconstruct input images via reverse diffusion and captures subtle manipulations through reconstruction discrepancies. The IRL module applies self-supervised learning with Latent Consistency Loss (LCL) to extract robust, invariant features, ensuring consistent latent representations across augmented views. We also incorporate frequency domain analysis using Discrete Fourier Transform (DFT) to enhance manipulation detection. Additionally, we introduce ForensicsImage, a publicly available dataset of over 400,000 real and AI-generated images from LSUN-Bedroom, CelebA-HQ, CelebDFv2, and various diffusion models. Experiments on ForensicsImage and GenImage show that DiffCoR achieves state-of-the-art performance, with strong cross-dataset generalization, making it suitable for real-world use in digital forensics, content verification, and social media moderation.","PeriodicalId":13205,"journal":{"name":"IEEE Open Journal of the Computer Society","volume":"6 ","pages":"1353-1365"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11018794","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Computer Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11018794/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diffusion-based generative models have significantly advanced the field of image synthesis, presenting additional challenges regarding the integrity and authenticity of digital images. Consequently, the identification of AI-generated images has become a critical problem in image forensics. However, there is a lack of literature addressing the detection of images generated by diffusion models. In this article, our focus is on developing a model capable of detecting images generated through both GAN techniques and diffusion models. We propose DiffCoR, a novel detection method for identifying AI-generated images. It consists of two main modules: Stable Diffusion Processing (SDP) and Image Representation Learning (IRL). The SDP module uses a pre-trained Stable Diffusion model to reconstruct input images via reverse diffusion and captures subtle manipulations through reconstruction discrepancies. The IRL module applies self-supervised learning with Latent Consistency Loss (LCL) to extract robust, invariant features, ensuring consistent latent representations across augmented views. We also incorporate frequency domain analysis using Discrete Fourier Transform (DFT) to enhance manipulation detection. Additionally, we introduce ForensicsImage, a publicly available dataset of over 400,000 real and AI-generated images from LSUN-Bedroom, CelebA-HQ, CelebDFv2, and various diffusion models. Experiments on ForensicsImage and GenImage show that DiffCoR achieves state-of-the-art performance, with strong cross-dataset generalization, making it suitable for real-world use in digital forensics, content verification, and social media moderation.
基于一致表示学习的稳定扩散模型对人工智能生成图像的暴露
基于扩散的生成模型极大地推进了图像合成领域,对数字图像的完整性和真实性提出了额外的挑战。因此,识别人工智能生成的图像已成为图像取证中的一个关键问题。然而,关于扩散模型生成的图像检测的文献还很缺乏。在本文中,我们的重点是开发一个能够检测通过GAN技术和扩散模型生成的图像的模型。我们提出了DiffCoR,一种新的检测方法来识别人工智能生成的图像。它包括两个主要模块:稳定扩散处理(SDP)和图像表示学习(IRL)。SDP模块使用预训练的稳定扩散模型通过反向扩散重建输入图像,并通过重建差异捕获微妙的操作。IRL模块应用具有潜在一致性损失(LCL)的自监督学习来提取鲁棒的、不变的特征,确保在增强视图中保持一致的潜在表示。我们还结合使用离散傅立叶变换(DFT)的频域分析来增强操作检测。此外,我们还介绍了法医图像,这是一个公开的数据集,包含来自LSUN-Bedroom, CelebA-HQ, CelebDFv2和各种扩散模型的40多万张真实和人工智能生成的图像。在ForensicsImage和GenImage上的实验表明,DiffCoR实现了最先进的性能,具有很强的跨数据集泛化能力,使其适用于现实世界中数字取证、内容验证和社交媒体审核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信