CST-AFNet: A dual attention-based deep learning framework for intrusion detection in IoT networks

IF 4.5 Q2 COMPUTER SCIENCE, THEORY & METHODS
Array Pub Date : 2025-08-28 DOI:10.1016/j.array.2025.100501
Waqas Ishtiaq , Ashrafun Zannat , A.H.M. Shahariar Parvez , Md. Alamgir Hossain , Muntasir Hasan Kanchan , Muhammad Masud Tarek
{"title":"CST-AFNet: A dual attention-based deep learning framework for intrusion detection in IoT networks","authors":"Waqas Ishtiaq ,&nbsp;Ashrafun Zannat ,&nbsp;A.H.M. Shahariar Parvez ,&nbsp;Md. Alamgir Hossain ,&nbsp;Muntasir Hasan Kanchan ,&nbsp;Muhammad Masud Tarek","doi":"10.1016/j.array.2025.100501","DOIUrl":null,"url":null,"abstract":"<div><div>The rapid expansion of the Internet of Things (IoT) has revolutionized modern industries by enabling smart automation and real-time connectivity. However, this evolution has also introduced complex cybersecurity challenges due to the heterogeneous, resource-constrained, and distributed nature of these environments. To address these challenges, this research presents CST-AFNet, a novel dual attention-based deep learning framework specifically designed for robust intrusion detection in IoT networks. The model integrates multi-scale Convolutional Neural Networks (CNNs) for spatial feature extraction, Bidirectional Gated Recurrent Units (BiGRUs) for capturing temporal dependencies, and a dual attention mechanism, channel and temporal attention to enhance focus on critical patterns in the data. The proposed method was trained and evaluated on the Edge-IIoTset dataset, a comprehensive and realistic benchmark containing over 2.2 million labeled instances spanning 15 attack types and benign traffic, collected from a seven-layer industrial testbed. Our proposed model achieves an outstanding accuracy with 15 attack types and benign traffic. CST-AFNet model achieves 99.97 % accuracy. Moreover, this model demonstrates an exceptional accuracy with macro-averaged precision, recall, and F1-score all above 99.3 %. Experimental results demonstrate that CST-AFNet achieves superior detection accuracy, significantly outperforming traditional deep learning models. The findings confirm that CST-AFNet is a powerful and scalable solution for real-time cyber threat detection in complex IoT/IIoT environments, paving the way for more secure, intelligent, and adaptive cyber-physical systems.</div></div>","PeriodicalId":8417,"journal":{"name":"Array","volume":"27 ","pages":"Article 100501"},"PeriodicalIF":4.5000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Array","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590005625001286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid expansion of the Internet of Things (IoT) has revolutionized modern industries by enabling smart automation and real-time connectivity. However, this evolution has also introduced complex cybersecurity challenges due to the heterogeneous, resource-constrained, and distributed nature of these environments. To address these challenges, this research presents CST-AFNet, a novel dual attention-based deep learning framework specifically designed for robust intrusion detection in IoT networks. The model integrates multi-scale Convolutional Neural Networks (CNNs) for spatial feature extraction, Bidirectional Gated Recurrent Units (BiGRUs) for capturing temporal dependencies, and a dual attention mechanism, channel and temporal attention to enhance focus on critical patterns in the data. The proposed method was trained and evaluated on the Edge-IIoTset dataset, a comprehensive and realistic benchmark containing over 2.2 million labeled instances spanning 15 attack types and benign traffic, collected from a seven-layer industrial testbed. Our proposed model achieves an outstanding accuracy with 15 attack types and benign traffic. CST-AFNet model achieves 99.97 % accuracy. Moreover, this model demonstrates an exceptional accuracy with macro-averaged precision, recall, and F1-score all above 99.3 %. Experimental results demonstrate that CST-AFNet achieves superior detection accuracy, significantly outperforming traditional deep learning models. The findings confirm that CST-AFNet is a powerful and scalable solution for real-time cyber threat detection in complex IoT/IIoT environments, paving the way for more secure, intelligent, and adaptive cyber-physical systems.
CST-AFNet:用于物联网网络入侵检测的基于双注意力的深度学习框架
物联网(IoT)的快速扩张通过实现智能自动化和实时连接,彻底改变了现代工业。然而,由于这些环境的异构性、资源约束和分布式特性,这种演变也带来了复杂的网络安全挑战。为了应对这些挑战,本研究提出了CST-AFNet,这是一种新颖的基于双注意力的深度学习框架,专为物联网网络中的强大入侵检测而设计。该模型集成了用于空间特征提取的多尺度卷积神经网络(cnn),用于捕获时间依赖性的双向门控循环单元(BiGRUs),以及双重注意机制,通道和时间注意,以增强对数据中关键模式的关注。提出的方法在Edge-IIoTset数据集上进行了训练和评估,该数据集是一个全面而现实的基准,包含超过220万个标记实例,跨越15种攻击类型和良性流量,从七层工业测试平台收集。我们提出的模型在15种攻击类型和良性流量下取得了出色的准确性。CST-AFNet模型准确率达到99.97%。此外,该模型具有优异的准确性,宏观平均精度、召回率和f1得分均在99.3%以上。实验结果表明,CST-AFNet的检测精度明显优于传统的深度学习模型。研究结果证实,CST-AFNet是一种强大且可扩展的解决方案,可用于复杂的物联网/工业物联网环境中的实时网络威胁检测,为更安全、智能和自适应的网络物理系统铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Array
Array Computer Science-General Computer Science
CiteScore
4.40
自引率
0.00%
发文量
93
审稿时长
45 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信