Classifying elliptically distributed observations using the Ledoit–Wolf shrinkage approach

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Rasoul Lotfi , Davood Shahsavani , Mohammad Arashi
{"title":"Classifying elliptically distributed observations using the Ledoit–Wolf shrinkage approach","authors":"Rasoul Lotfi ,&nbsp;Davood Shahsavani ,&nbsp;Mohammad Arashi","doi":"10.1016/j.jmva.2025.105495","DOIUrl":null,"url":null,"abstract":"<div><div>Classifying observations by the method of linear discriminant analysis deals with two challenges. First, the observations may not follow a Gaussian distribution, Second, the covariance matrix is singular when the number of predictor variables exceeds the number of observations. In this article, we study the classification of high-dimensional elliptically distributed data in the framework of Bayesian approach, while using the Ledoit and Wolf’s shrinkage methodology to overcome the singularity of the covariance matrix. Also, a special case t-distribution is considered and the optimal shrinkage parameter is obtained. Furthermore, we evaluated the performance of the proposed estimators on synthetic and real data. Although the optimal shrinkage parameter does not necessarily provide the minimum test error rate, it can provide a solution to show the superiority of our proposed estimation versus some benchmark method.</div></div>","PeriodicalId":16431,"journal":{"name":"Journal of Multivariate Analysis","volume":"210 ","pages":"Article 105495"},"PeriodicalIF":1.4000,"publicationDate":"2025-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multivariate Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0047259X25000909","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Classifying observations by the method of linear discriminant analysis deals with two challenges. First, the observations may not follow a Gaussian distribution, Second, the covariance matrix is singular when the number of predictor variables exceeds the number of observations. In this article, we study the classification of high-dimensional elliptically distributed data in the framework of Bayesian approach, while using the Ledoit and Wolf’s shrinkage methodology to overcome the singularity of the covariance matrix. Also, a special case t-distribution is considered and the optimal shrinkage parameter is obtained. Furthermore, we evaluated the performance of the proposed estimators on synthetic and real data. Although the optimal shrinkage parameter does not necessarily provide the minimum test error rate, it can provide a solution to show the superiority of our proposed estimation versus some benchmark method.
使用Ledoit-Wolf收缩方法对椭圆分布的观测进行分类
用线性判别分析方法对观测值进行分类面临两个挑战。首先,观测值可能不服从高斯分布;其次,当预测变量的数量超过观测值的数量时,协方差矩阵是奇异的。本文在贝叶斯方法框架下研究了高维椭圆分布数据的分类问题,同时利用Ledoit和Wolf的收缩方法克服了协方差矩阵的奇异性。同时考虑了特殊情况下的t分布,得到了最优收缩参数。此外,我们评估了所提出的估计器在合成数据和实际数据上的性能。虽然最佳收缩参数不一定提供最小的测试错误率,但它可以提供一个解决方案,以显示我们所提出的估计相对于某些基准方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Multivariate Analysis
Journal of Multivariate Analysis 数学-统计学与概率论
CiteScore
2.40
自引率
25.00%
发文量
108
审稿时长
74 days
期刊介绍: Founded in 1971, the Journal of Multivariate Analysis (JMVA) is the central venue for the publication of new, relevant methodology and particularly innovative applications pertaining to the analysis and interpretation of multidimensional data. The journal welcomes contributions to all aspects of multivariate data analysis and modeling, including cluster analysis, discriminant analysis, factor analysis, and multidimensional continuous or discrete distribution theory. Topics of current interest include, but are not limited to, inferential aspects of Copula modeling Functional data analysis Graphical modeling High-dimensional data analysis Image analysis Multivariate extreme-value theory Sparse modeling Spatial statistics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信