Targeted Clifford logical gates for hypergraph product codes

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2025-08-29 DOI:10.22331/q-2025-08-29-1842
Adway Patra, Alexander Barg
{"title":"Targeted Clifford logical gates for hypergraph product codes","authors":"Adway Patra, Alexander Barg","doi":"10.22331/q-2025-08-29-1842","DOIUrl":null,"url":null,"abstract":"Starting with an explicit framework for designing logical Clifford circuits for CSS codes, we construct logical gates for Hypergraph Product Codes. We first derive symplectic matrices for CNOT, CZ, Phase, and Hadamard operators, which together generate the Clifford group. This enables us to design explicit transformations that result in targeted logical gates for arbitrary codes in this family. As a concrete example, we give logical circuits for the $[[18,2,3]]$ toric code.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"25 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2025-08-29-1842","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Starting with an explicit framework for designing logical Clifford circuits for CSS codes, we construct logical gates for Hypergraph Product Codes. We first derive symplectic matrices for CNOT, CZ, Phase, and Hadamard operators, which together generate the Clifford group. This enables us to design explicit transformations that result in targeted logical gates for arbitrary codes in this family. As a concrete example, we give logical circuits for the $[[18,2,3]]$ toric code.
目标Clifford逻辑门超图产品代码
从设计CSS代码的逻辑Clifford电路的显式框架开始,我们构造了超图积码的逻辑门。我们首先推导出CNOT、CZ、Phase和Hadamard算子的辛矩阵,它们共同生成Clifford群。这使我们能够设计显式转换,从而为这个家族中的任意代码生成目标逻辑门。作为一个具体的例子,我们给出$[[18,2,3]]$ toric代码的逻辑电路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信