Minimal residual discretization of a class of fully nonlinear elliptic PDE

IF 2.4 2区 数学 Q1 MATHEMATICS, APPLIED
Dietmar Gallistl, Ngoc Tien Tran
{"title":"Minimal residual discretization of a class of fully nonlinear elliptic PDE","authors":"Dietmar Gallistl, Ngoc Tien Tran","doi":"10.1093/imanum/draf075","DOIUrl":null,"url":null,"abstract":"This work introduces finite-element methods for a class of elliptic fully nonlinear partial differential equations. They are based on a minimal residual principle that builds upon the Alexandrov–Bakelman–Pucci estimate. Under rather general structural assumptions on the operator, convergence of $C^{1}$ conforming and discontinuous Galerkin methods is proven in the $L^{^\\infty} $ norm. Numerical experiments on the performance of adaptive mesh refinement driven by local information of the residual in two and three space dimensions are provided.","PeriodicalId":56295,"journal":{"name":"IMA Journal of Numerical Analysis","volume":"21 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Numerical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/imanum/draf075","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This work introduces finite-element methods for a class of elliptic fully nonlinear partial differential equations. They are based on a minimal residual principle that builds upon the Alexandrov–Bakelman–Pucci estimate. Under rather general structural assumptions on the operator, convergence of $C^{1}$ conforming and discontinuous Galerkin methods is proven in the $L^{^\infty} $ norm. Numerical experiments on the performance of adaptive mesh refinement driven by local information of the residual in two and three space dimensions are provided.
一类完全非线性椭圆偏微分方程的最小残差离散化
本文介绍了求解一类椭圆型全非线性偏微分方程的有限元方法。它们基于基于亚历山德罗夫-贝克曼-普奇估计的最小残差原理。在相当一般的算子结构假设下,在$L^{^\infty} $范数下证明了$C^{1}$符合和不连续Galerkin方法的收敛性。对残差局部信息驱动的自适应网格细化在二维和三维空间的性能进行了数值实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IMA Journal of Numerical Analysis
IMA Journal of Numerical Analysis 数学-应用数学
CiteScore
5.30
自引率
4.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: The IMA Journal of Numerical Analysis (IMAJNA) publishes original contributions to all fields of numerical analysis; articles will be accepted which treat the theory, development or use of practical algorithms and interactions between these aspects. Occasional survey articles are also published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信