Enceladus Water Plume Modeling Using DSMC

IF 4 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS
A. Mahieux, D. B. Goldstein, P. L. Varghese, L. M. Trafton, G. Portyankina, L. W. Esposito, M. E. Perry, J. H. Waite, B. S. Southworth, S. Kempf
{"title":"Enceladus Water Plume Modeling Using DSMC","authors":"A. Mahieux,&nbsp;D. B. Goldstein,&nbsp;P. L. Varghese,&nbsp;L. M. Trafton,&nbsp;G. Portyankina,&nbsp;L. W. Esposito,&nbsp;M. E. Perry,&nbsp;J. H. Waite,&nbsp;B. S. Southworth,&nbsp;S. Kempf","doi":"10.1029/2025JE009008","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the water plumes of Saturn's moon, Enceladus, using Direct Simulation Monte Carlo (DSMC) modeling to analyze venting dynamics and plume structures. Building on prior research, we employ a parametrized DSMC approach to model water vapor and ice particle flows, leveraging Cassini spacecraft data from instruments such as the Ion and Neutral Mass Spectrometer and the Ultraviolet Imaging Spectrograph. The study explores whether vent conditions, such as mass flow rates, mixture temperatures, and particle sizes, can be inferred from observational data. We develop a computational framework to expand plume simulations beyond 10 km altitudes, incorporating gravitational and inertial forces in an Enceladus-fixed reference frame. A sensitivity analysis correlates vent parameters with observed data, identifying critical contributors such as vent orientation and location, mass flow rate, exit temperature, and ice grain characteristics. This approach reduces the dimensionality of fitting procedures, enabling robust parameter constraints and a more detailed understanding of plume dynamics. Key findings include constrained values for mass flow rates, ice grain radii assuming single-size particles, and exit temperatures (∼44–61 K), consistent with theoretical predictions. Additionally, variations in vent orientation and positional parameters were refined from the work of Porco et al. (2014, https://doi.org/10.1088/0004-6256/148/3/45). These results highlight the importance of collision dynamics in shaping plume structures. This work establishes a computationally efficient methodology for analyzing cryovolcanic plumes applicable to future missions exploring icy moons such as Enceladus or Europa. By prioritizing sensitive parameters, the study offers insights for optimizing observational strategies to maximize scientific yield.</p>","PeriodicalId":16101,"journal":{"name":"Journal of Geophysical Research: Planets","volume":"130 9","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025JE009008","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Planets","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JE009008","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the water plumes of Saturn's moon, Enceladus, using Direct Simulation Monte Carlo (DSMC) modeling to analyze venting dynamics and plume structures. Building on prior research, we employ a parametrized DSMC approach to model water vapor and ice particle flows, leveraging Cassini spacecraft data from instruments such as the Ion and Neutral Mass Spectrometer and the Ultraviolet Imaging Spectrograph. The study explores whether vent conditions, such as mass flow rates, mixture temperatures, and particle sizes, can be inferred from observational data. We develop a computational framework to expand plume simulations beyond 10 km altitudes, incorporating gravitational and inertial forces in an Enceladus-fixed reference frame. A sensitivity analysis correlates vent parameters with observed data, identifying critical contributors such as vent orientation and location, mass flow rate, exit temperature, and ice grain characteristics. This approach reduces the dimensionality of fitting procedures, enabling robust parameter constraints and a more detailed understanding of plume dynamics. Key findings include constrained values for mass flow rates, ice grain radii assuming single-size particles, and exit temperatures (∼44–61 K), consistent with theoretical predictions. Additionally, variations in vent orientation and positional parameters were refined from the work of Porco et al. (2014, https://doi.org/10.1088/0004-6256/148/3/45). These results highlight the importance of collision dynamics in shaping plume structures. This work establishes a computationally efficient methodology for analyzing cryovolcanic plumes applicable to future missions exploring icy moons such as Enceladus or Europa. By prioritizing sensitive parameters, the study offers insights for optimizing observational strategies to maximize scientific yield.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

利用DSMC模拟土卫二水羽
本研究利用直接模拟蒙特卡罗(DSMC)模型对土星卫星土卫二上的水羽进行了研究,以分析其喷发动力学和羽流结构。在先前研究的基础上,我们采用参数化DSMC方法来模拟水蒸气和冰粒子流动,利用卡西尼号航天器上离子和中性质谱仪以及紫外成像光谱仪等仪器的数据。该研究探讨了是否可以从观测数据推断出排气条件,如质量流量、混合物温度和颗粒大小。我们开发了一个计算框架来扩展超过10公里高度的羽流模拟,在土卫二固定的参考框架中结合重力和惯生力。敏感性分析将通风口参数与观测数据联系起来,确定关键因素,如通风口方向和位置、质量流量、出口温度和冰粒特征。这种方法降低了拟合过程的维度,实现了可靠的参数约束,并更详细地了解了羽流动力学。主要发现包括质量流量的约束值,假设单一尺寸颗粒的冰粒半径,以及与理论预测一致的出口温度(~ 44-61 K)。此外,从Porco等人(2014,https://doi.org/10.1088/0004-6256/148/3/45)的工作中提炼出了气孔方向和位置参数的变化。这些结果突出了碰撞动力学在形成羽流结构中的重要性。这项工作建立了一种计算效率高的方法来分析冰冻火山羽流,适用于未来探索冰卫星如土卫二或木卫二的任务。通过对敏感参数进行优先排序,该研究为优化观测策略以最大限度地提高科学产量提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research: Planets
Journal of Geophysical Research: Planets Earth and Planetary Sciences-Earth and Planetary Sciences (miscellaneous)
CiteScore
8.00
自引率
27.10%
发文量
254
期刊介绍: The Journal of Geophysical Research Planets is dedicated to the publication of new and original research in the broad field of planetary science. Manuscripts concerning planetary geology, geophysics, geochemistry, atmospheres, and dynamics are appropriate for the journal when they increase knowledge about the processes that affect Solar System objects. Manuscripts concerning other planetary systems, exoplanets or Earth are welcome when presented in a comparative planetology perspective. Studies in the field of astrobiology will be considered when they have immediate consequences for the interpretation of planetary data. JGR: Planets does not publish manuscripts that deal with future missions and instrumentation, nor those that are primarily of an engineering interest. Instrument, calibration or data processing papers may be appropriate for the journal, but only when accompanied by scientific analysis and interpretation that increases understanding of the studied object. A manuscript that describes a new method or technique would be acceptable for JGR: Planets if it contained new and relevant scientific results obtained using the method. Review articles are generally not appropriate for JGR: Planets, but they may be considered if they form an integral part of a special issue.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信