Shape Approximation by Surface Reuse

IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Berend Baas, David Bommes, Adrien Bousseau
{"title":"Shape Approximation by Surface Reuse","authors":"Berend Baas,&nbsp;David Bommes,&nbsp;Adrien Bousseau","doi":"10.1111/cgf.70204","DOIUrl":null,"url":null,"abstract":"<p>The manufacturing industry faces an urgent need to transition from the linear “make-take-use-dispose” production model towards more sustainable circular models that retain resources in the production chain. Motivated by this need, we introduce the new problem of approximating 3D surfaces by reusing panels from other surfaces. We present an algorithm that takes as input one or several existing shapes and relies on partial shape registration to identify a small set of simple panels that, once cut from the existing shapes and transformed rigidly, approximate a target shape within a user-defined distance threshold. As a proof of concept, we demonstrate our algorithm in the context of rapid prototyping, where we harvest curved panels from plastic bottles and assemble them with custom connectors to fabricate medium-size freeform structures.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 5","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70204","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The manufacturing industry faces an urgent need to transition from the linear “make-take-use-dispose” production model towards more sustainable circular models that retain resources in the production chain. Motivated by this need, we introduce the new problem of approximating 3D surfaces by reusing panels from other surfaces. We present an algorithm that takes as input one or several existing shapes and relies on partial shape registration to identify a small set of simple panels that, once cut from the existing shapes and transformed rigidly, approximate a target shape within a user-defined distance threshold. As a proof of concept, we demonstrate our algorithm in the context of rapid prototyping, where we harvest curved panels from plastic bottles and assemble them with custom connectors to fabricate medium-size freeform structures.

曲面重用的形状逼近
制造业迫切需要从线性的“制造-使用-处理”生产模式过渡到更可持续的循环模式,将资源保留在生产链中。在这种需求的激励下,我们引入了通过重用其他表面的面板来近似3D表面的新问题。我们提出了一种算法,该算法将一个或多个现有形状作为输入,并依赖于部分形状配准来识别一小组简单面板,这些面板一旦从现有形状中切割并严格转换,就可以在用户定义的距离阈值内近似目标形状。作为概念验证,我们在快速原型的背景下展示了我们的算法,我们从塑料瓶中收集弯曲的面板,并将它们与定制连接器组装在一起,以制造中等尺寸的自由形状结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Graphics Forum
Computer Graphics Forum 工程技术-计算机:软件工程
CiteScore
5.80
自引率
12.00%
发文量
175
审稿时长
3-6 weeks
期刊介绍: Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信