{"title":"Real-Time Secondary Animation with Spring Decomposed Skinning","authors":"B. Akyürek, Y. Sahillioğlu","doi":"10.1111/cgf.70209","DOIUrl":null,"url":null,"abstract":"<p>We present a framework to integrate secondary motion into the existing animation pipelines. Skinning provides fast computation for real-time animation and intuitive control over the deformation. Despite the benefits, traditional skinning methods lack secondary dynamics such as the jiggling of fat tissues. We address the rigidity of skinning methods by physically simulating the deformation handles with spring forces. Most studies introduce secondary motion into skinning by employing FEM simulation on volumetric mesh vertices, coupling their computational complexity with mesh resolution. Unlike these approaches, we do not require any volumetric mesh input. Our method scales to higher mesh resolutions by directly simulating deformation handles. The simulated handles, namely the spring bones, enrich rigid skinning deformation with a diverse range of secondary animation for subjects including rigid bodies, elastic bodies, soft tissues, and cloth simulation. In essence, we leverage the benefits of physical simulations in the scope of deformation handles to achieve controllable real-time dynamics on a wide range of subjects while remaining compatible with existing skinning pipelines. Our method avoids tetrahedral remeshing and it is significantly faster compared to FEM-based volumetric mesh simulations.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 5","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70209","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
We present a framework to integrate secondary motion into the existing animation pipelines. Skinning provides fast computation for real-time animation and intuitive control over the deformation. Despite the benefits, traditional skinning methods lack secondary dynamics such as the jiggling of fat tissues. We address the rigidity of skinning methods by physically simulating the deformation handles with spring forces. Most studies introduce secondary motion into skinning by employing FEM simulation on volumetric mesh vertices, coupling their computational complexity with mesh resolution. Unlike these approaches, we do not require any volumetric mesh input. Our method scales to higher mesh resolutions by directly simulating deformation handles. The simulated handles, namely the spring bones, enrich rigid skinning deformation with a diverse range of secondary animation for subjects including rigid bodies, elastic bodies, soft tissues, and cloth simulation. In essence, we leverage the benefits of physical simulations in the scope of deformation handles to achieve controllable real-time dynamics on a wide range of subjects while remaining compatible with existing skinning pipelines. Our method avoids tetrahedral remeshing and it is significantly faster compared to FEM-based volumetric mesh simulations.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.