Pan-Cancer Integrative Analyses Reveal the Crosstalk Between the Intratumoral Microbiome, TP53 Mutation and Tumour Microenvironment

IF 1.9 4区 生物学 Q4 CELL BIOLOGY
Baoling Wang, Bo Zhang, Chun Li
{"title":"Pan-Cancer Integrative Analyses Reveal the Crosstalk Between the Intratumoral Microbiome, TP53 Mutation and Tumour Microenvironment","authors":"Baoling Wang,&nbsp;Bo Zhang,&nbsp;Chun Li","doi":"10.1049/syb2.70035","DOIUrl":null,"url":null,"abstract":"<p>Accumulating evidence suggests that the TP53 mutation, intratumoral microbiome, and tumour microenvironment (TME) are closely linked to tumourigenesis, yet the biological mechanisms underlying these connections remain unclear. To explore this, we collected multi-omics data—including genome, transcriptome, and tumour microbiome data—from a wide range of cancer types in The Cancer Genome Atlas (TCGA). Through a pan-cancer analysis, we identified significant correlations between intratumoral microbiota diversity and TP53 mutation status, particularly in hepatocellular carcinoma (HCC) and endometrial cancer (EC). Despite notable differences in microbiota composition between these two cancer types, we consistently observed that TP53 mutations were associated with reduced alpha-diversity. Additionally, we found that TP53 mutation status significantly influenced stromal components within the TME, such as a strong correlation between decreased endothelial cell abundance and TP53 mutation. Our integrated approach reveals the complex interplay between TP53 and factors regulating the host TME, offering new insights into cancer progression and potential therapeutic targets for future research.</p>","PeriodicalId":50379,"journal":{"name":"IET Systems Biology","volume":"19 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/syb2.70035","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Systems Biology","FirstCategoryId":"99","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/syb2.70035","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Accumulating evidence suggests that the TP53 mutation, intratumoral microbiome, and tumour microenvironment (TME) are closely linked to tumourigenesis, yet the biological mechanisms underlying these connections remain unclear. To explore this, we collected multi-omics data—including genome, transcriptome, and tumour microbiome data—from a wide range of cancer types in The Cancer Genome Atlas (TCGA). Through a pan-cancer analysis, we identified significant correlations between intratumoral microbiota diversity and TP53 mutation status, particularly in hepatocellular carcinoma (HCC) and endometrial cancer (EC). Despite notable differences in microbiota composition between these two cancer types, we consistently observed that TP53 mutations were associated with reduced alpha-diversity. Additionally, we found that TP53 mutation status significantly influenced stromal components within the TME, such as a strong correlation between decreased endothelial cell abundance and TP53 mutation. Our integrated approach reveals the complex interplay between TP53 and factors regulating the host TME, offering new insights into cancer progression and potential therapeutic targets for future research.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

泛癌综合分析揭示肿瘤内微生物组、TP53突变和肿瘤微环境之间的串扰
越来越多的证据表明,TP53突变、肿瘤内微生物组和肿瘤微环境(TME)与肿瘤发生密切相关,但这些联系背后的生物学机制尚不清楚。为了探索这一点,我们在癌症基因组图谱(TCGA)中收集了来自多种癌症类型的多组学数据,包括基因组、转录组和肿瘤微生物组数据。通过泛癌症分析,我们发现肿瘤内微生物群多样性与TP53突变状态之间存在显著相关性,特别是在肝细胞癌(HCC)和子宫内膜癌(EC)中。尽管这两种癌症类型之间的微生物群组成存在显著差异,但我们一致观察到TP53突变与α -多样性降低有关。此外,我们发现TP53突变状态显著影响TME内的基质成分,例如内皮细胞丰度下降与TP53突变之间存在很强的相关性。我们的综合方法揭示了TP53与调节宿主TME的因子之间复杂的相互作用,为未来的研究提供了癌症进展和潜在治疗靶点的新见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IET Systems Biology
IET Systems Biology 生物-数学与计算生物学
CiteScore
4.20
自引率
4.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: IET Systems Biology covers intra- and inter-cellular dynamics, using systems- and signal-oriented approaches. Papers that analyse genomic data in order to identify variables and basic relationships between them are considered if the results provide a basis for mathematical modelling and simulation of cellular dynamics. Manuscripts on molecular and cell biological studies are encouraged if the aim is a systems approach to dynamic interactions within and between cells. The scope includes the following topics: Genomics, transcriptomics, proteomics, metabolomics, cells, tissue and the physiome; molecular and cellular interaction, gene, cell and protein function; networks and pathways; metabolism and cell signalling; dynamics, regulation and control; systems, signals, and information; experimental data analysis; mathematical modelling, simulation and theoretical analysis; biological modelling, simulation, prediction and control; methodologies, databases, tools and algorithms for modelling and simulation; modelling, analysis and control of biological networks; synthetic biology and bioengineering based on systems biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信