{"title":"GreenCloud: Volumetric Gradient Filtering via Regularized Green's Functions","authors":"Kenji Tojo, Nobuyuki Umetani","doi":"10.1111/cgf.70207","DOIUrl":null,"url":null,"abstract":"<p>Gradient-based optimization is a fundamental tool in geometry processing, but it is often hampered by geometric distortion arising from noisy or sparse gradients. Existing methods mitigate these issues by filtering (i.e., diffusing) gradients over a surface mesh, but they require explicit mesh connectivity and solving large linear systems, making them unsuitable for point-based representation. In this work, we introduce a gradient filtering method tailored for point-based geometry. Our method bypasses explicit connectivity by leveraging regularized Green's functions to directly compute the filtered gradient field from discrete spatial points. Additionally, our approach incorporates elastic deformation based on Green's function of linear elasticity (known as Kelvinlets), reproducing various elastic behaviors such as smoothness and volume preservation while improving robustness in affine transformations. We further accelerate computation using a hierarchical Barnes–Hut style approximation, enabling scalable optimization of one million points. Our method significantly improves convergence across a wide range of applications, including reconstruction, editing, stylization, and simplified optimization experiments with Gaussian splatting.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 5","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70207","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Gradient-based optimization is a fundamental tool in geometry processing, but it is often hampered by geometric distortion arising from noisy or sparse gradients. Existing methods mitigate these issues by filtering (i.e., diffusing) gradients over a surface mesh, but they require explicit mesh connectivity and solving large linear systems, making them unsuitable for point-based representation. In this work, we introduce a gradient filtering method tailored for point-based geometry. Our method bypasses explicit connectivity by leveraging regularized Green's functions to directly compute the filtered gradient field from discrete spatial points. Additionally, our approach incorporates elastic deformation based on Green's function of linear elasticity (known as Kelvinlets), reproducing various elastic behaviors such as smoothness and volume preservation while improving robustness in affine transformations. We further accelerate computation using a hierarchical Barnes–Hut style approximation, enabling scalable optimization of one million points. Our method significantly improves convergence across a wide range of applications, including reconstruction, editing, stylization, and simplified optimization experiments with Gaussian splatting.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.