Yueji Ma, Jialu Shen, Yanzun Meng, Dong Xiao, Zuoqiang Shi, Bin Wang
{"title":"Anisotropic Gauss Reconstruction and Global Orientation with Octree-based Acceleration","authors":"Yueji Ma, Jialu Shen, Yanzun Meng, Dong Xiao, Zuoqiang Shi, Bin Wang","doi":"10.1111/cgf.70199","DOIUrl":null,"url":null,"abstract":"<p>Unoriented surface reconstruction is an important task in computer graphics. Recently, methods based on the Gauss formula or winding number have achieved state-of-the-art performance in both orientation and surface reconstruction. The Gauss formula or winding number, derived from the fundamental solution of the Laplace equation, initially found applications in calculating potentials in electromagnetism. Inspired by the practical necessity of calculating potentials in diverse electromagnetic media, we consider the anisotropic Laplace equation to derive the anisotropic Gauss formula and apply it to surface reconstruction, called “anisotropic Gauss reconstruction”. By leveraging the flexibility of anisotropic coefficients, additional constraints can be introduced to the indicator function. This results in a stable linear system, eliminating the need for any artificial regularization. In addition, the oriented normals can be refined by computing the gradient of the indicator function, ultimately producing high-quality normals and surfaces. Regarding the space/time complexity, we propose an octree-based acceleration algorithm to achieve a space complexity of O(N) and a time complexity of O(NlogN). Our method can reconstruct ultra-large-scale models (exceeding 5 million points) within 4 minutes on an NVIDIA RTX 4090 GPU. Extensive experiments demonstrate that our method achieves state-of-the-art performance in both orientation and reconstruction, particularly for models with thin structures, small holes, or high genus. Both CuPy-based and CUDA-accelerated implementations are made publicly available at https://github.com/mayueji/AGR.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 5","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70199","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Unoriented surface reconstruction is an important task in computer graphics. Recently, methods based on the Gauss formula or winding number have achieved state-of-the-art performance in both orientation and surface reconstruction. The Gauss formula or winding number, derived from the fundamental solution of the Laplace equation, initially found applications in calculating potentials in electromagnetism. Inspired by the practical necessity of calculating potentials in diverse electromagnetic media, we consider the anisotropic Laplace equation to derive the anisotropic Gauss formula and apply it to surface reconstruction, called “anisotropic Gauss reconstruction”. By leveraging the flexibility of anisotropic coefficients, additional constraints can be introduced to the indicator function. This results in a stable linear system, eliminating the need for any artificial regularization. In addition, the oriented normals can be refined by computing the gradient of the indicator function, ultimately producing high-quality normals and surfaces. Regarding the space/time complexity, we propose an octree-based acceleration algorithm to achieve a space complexity of O(N) and a time complexity of O(NlogN). Our method can reconstruct ultra-large-scale models (exceeding 5 million points) within 4 minutes on an NVIDIA RTX 4090 GPU. Extensive experiments demonstrate that our method achieves state-of-the-art performance in both orientation and reconstruction, particularly for models with thin structures, small holes, or high genus. Both CuPy-based and CUDA-accelerated implementations are made publicly available at https://github.com/mayueji/AGR.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.