Volume Preserving Neural Shape Morphing

IF 2.9 4区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Camille Buonomo, Julie Digne 1, Raphaëlle Chaine
{"title":"Volume Preserving Neural Shape Morphing","authors":"Camille Buonomo,&nbsp;Julie Digne 1,&nbsp;Raphaëlle Chaine","doi":"10.1111/cgf.70196","DOIUrl":null,"url":null,"abstract":"<p>Shape interpolation is a long standing challenge of geometry processing. As it is ill-posed, shape interpolation methods always work under some hypothesis such as semantic part matching or least displacement. Among such constraints, volume preservation is one of the traditional animation principles. In this paper we propose a method to interpolate between shapes in arbitrary poses favoring volume and topology preservation. To do so, we rely on a level set representation of the shape and its advection by a velocity field through the level set equation, both shape representation and velocity fields being parameterized as neural networks. While divergence free velocity fields ensure volume and topology preservation, they are incompatible with the Eikonal constraint of signed distance functions. This leads us to introduce the notion of adaptive divergence velocity field, a construction compatible with the Eikonal equation with theoretical guarantee on the shape volume preservation. In the non constant volume setting, our method is still helpful to provide a natural morphing, by combining it with a parameterization of the volume change over time. We show experimentally that our method exhibits better volume preservation than other recent approaches, limits topological changes and preserves the structures of shapes better without landmark correspondences.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 5","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70196","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Shape interpolation is a long standing challenge of geometry processing. As it is ill-posed, shape interpolation methods always work under some hypothesis such as semantic part matching or least displacement. Among such constraints, volume preservation is one of the traditional animation principles. In this paper we propose a method to interpolate between shapes in arbitrary poses favoring volume and topology preservation. To do so, we rely on a level set representation of the shape and its advection by a velocity field through the level set equation, both shape representation and velocity fields being parameterized as neural networks. While divergence free velocity fields ensure volume and topology preservation, they are incompatible with the Eikonal constraint of signed distance functions. This leads us to introduce the notion of adaptive divergence velocity field, a construction compatible with the Eikonal equation with theoretical guarantee on the shape volume preservation. In the non constant volume setting, our method is still helpful to provide a natural morphing, by combining it with a parameterization of the volume change over time. We show experimentally that our method exhibits better volume preservation than other recent approaches, limits topological changes and preserves the structures of shapes better without landmark correspondences.

体积保持神经形状变形
形状插值是一个长期存在的挑战几何处理。由于形状插值方法是不适定的,通常在语义部分匹配或最小位移等假设下工作。在这些限制中,体积保存是传统的动画原则之一。在本文中,我们提出了一种有利于体积和拓扑保持的任意姿态形状之间的插值方法。要做到这一点,我们依赖于形状的水平集表示及其平流通过水平集方程的速度场,形状表示和速度场都被参数化为神经网络。虽然散度自由速度场保证了体积和拓扑的保持,但它们与符号距离函数的Eikonal约束不兼容。为此,我们引入了自适应散度速度场的概念,这是一种与Eikonal方程相容的结构,对形状体积保持有理论保证。在非恒定体积设置中,我们的方法通过将其与随时间的体积变化的参数化相结合,仍然有助于提供自然变形。我们通过实验证明,我们的方法比其他最近的方法具有更好的体积保存,限制了拓扑变化,并且在没有地标对应的情况下更好地保留了形状结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computer Graphics Forum
Computer Graphics Forum 工程技术-计算机:软件工程
CiteScore
5.80
自引率
12.00%
发文量
175
审稿时长
3-6 weeks
期刊介绍: Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信