{"title":"One-Shot Method for Computing Generalized Winding Numbers","authors":"C. Martens, M. Bessmeltsev","doi":"10.1111/cgf.70194","DOIUrl":null,"url":null,"abstract":"<p>The generalized winding number is an essential part of the geometry processing toolkit, allowing to quantify how much a given point is inside a surface, even when the surface has boundaries and noise. We propose a new universal method to compute a generalized winding number, based only on the surface boundary and the intersections of a single ray with the surface, supporting any oriented surface representations that support a ray intersection query. Due to the focus on the boundary, our algorithm has a unique set of properties. For 2D parametric curves, on a regular grid of query points, our method is up to <i>4×</i> faster than the current state of the art, maintaining the same precision. In 3D, our method can compute a winding number of a surface without discretizing it, including parametric surfaces. For some meshes with many triangles and a simple boundary, our method is faster than the hierarchical evaluation of the generalized winding number while still being precise. Similarly, on some parametric surfaces with a simple boundary, our method can be faster than adaptive quadrature. We validate our algorithms theoretically, numerically, and by demonstrating a gallery of results on a variety of parametric surfaces and meshes, as well uses in a variety of applications, including voxelizations and boolean operations.</p>","PeriodicalId":10687,"journal":{"name":"Computer Graphics Forum","volume":"44 5","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cgf.70194","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics Forum","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cgf.70194","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The generalized winding number is an essential part of the geometry processing toolkit, allowing to quantify how much a given point is inside a surface, even when the surface has boundaries and noise. We propose a new universal method to compute a generalized winding number, based only on the surface boundary and the intersections of a single ray with the surface, supporting any oriented surface representations that support a ray intersection query. Due to the focus on the boundary, our algorithm has a unique set of properties. For 2D parametric curves, on a regular grid of query points, our method is up to 4× faster than the current state of the art, maintaining the same precision. In 3D, our method can compute a winding number of a surface without discretizing it, including parametric surfaces. For some meshes with many triangles and a simple boundary, our method is faster than the hierarchical evaluation of the generalized winding number while still being precise. Similarly, on some parametric surfaces with a simple boundary, our method can be faster than adaptive quadrature. We validate our algorithms theoretically, numerically, and by demonstrating a gallery of results on a variety of parametric surfaces and meshes, as well uses in a variety of applications, including voxelizations and boolean operations.
期刊介绍:
Computer Graphics Forum is the official journal of Eurographics, published in cooperation with Wiley-Blackwell, and is a unique, international source of information for computer graphics professionals interested in graphics developments worldwide. It is now one of the leading journals for researchers, developers and users of computer graphics in both commercial and academic environments. The journal reports on the latest developments in the field throughout the world and covers all aspects of the theory, practice and application of computer graphics.