{"title":"perturbation of the nonlinear Schrödinger equation by a localized nonlinearity","authors":"Gong Chen, Jiaqi Liu, Yuanhong Tian","doi":"10.1007/s11005-025-01984-3","DOIUrl":null,"url":null,"abstract":"<div><p>We revisit the perturbative theory of infinite dimensional integrable systems developed by P. Deift and X. Zhou [8], aiming to provide new and simpler proofs of some key <span>\\(L^\\infty \\)</span> bounds and <span>\\(L^p\\)</span> <i>a priori</i> estimates. Our proofs emphasizes a further step towards understanding focussing problems and extends the applicability to other integrable models. As a concrete application, we examine the perturbation of the one-dimensional defocussing cubic nonlinear Schrödinger equation by a localized higher-order term. We introduce improved estimates to control the power of the perturbative term and demonstrate that the perturbed equation exhibits the same long-time behavior as the completely integrable nonlinear Schrödinger equation.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"115 5","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-025-01984-3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We revisit the perturbative theory of infinite dimensional integrable systems developed by P. Deift and X. Zhou [8], aiming to provide new and simpler proofs of some key \(L^\infty \) bounds and \(L^p\)a priori estimates. Our proofs emphasizes a further step towards understanding focussing problems and extends the applicability to other integrable models. As a concrete application, we examine the perturbation of the one-dimensional defocussing cubic nonlinear Schrödinger equation by a localized higher-order term. We introduce improved estimates to control the power of the perturbative term and demonstrate that the perturbed equation exhibits the same long-time behavior as the completely integrable nonlinear Schrödinger equation.
期刊介绍:
The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.