Joy Chakraborty, M. K. Sureshkumar, M. Joshi, S. Anand, M. S. Kulkarni
{"title":"Optimization of Placement of Continuous Air Monitors in a Radiological Facility","authors":"Joy Chakraborty, M. K. Sureshkumar, M. Joshi, S. Anand, M. S. Kulkarni","doi":"10.1007/s41810-024-00268-y","DOIUrl":null,"url":null,"abstract":"<div><p>The airborne concentration of radioactive materials in radiological facilities is primarily influenced by the ventilation system, air purification system, and emission sources. Continuous Air Monitors (CAMs) are installed in these facilities to monitor the activity concentration of radioactive aerosols during both routine operations and any malfunctioning conditions. Typically, CAM placement is determined by the direction of maximum airflow. However, aerosols do not always adhere to the behaviour of airstreams, raising concerns about the suitability of CAM placement. To address this issue, this study employs software that integrates aerosol dynamics with computational fluid dynamics to calculate the CAM Placement Parameter. This parameter is derived from the peak aerosol concentration and the lag time to reach the specified CAM location, indicating the relative merit of positioning CAMs in a radiological facility under varying ventilation rates. The findings suggest that the coupled aerosol-fluid dynamics model accurately predicts the optimal placement of CAMs in workplace environments, thereby minimizing occupational exposure.</p></div>","PeriodicalId":36991,"journal":{"name":"Aerosol Science and Engineering","volume":"9 3","pages":"413 - 425"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s41810-024-00268-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerosol Science and Engineering","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s41810-024-00268-y","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The airborne concentration of radioactive materials in radiological facilities is primarily influenced by the ventilation system, air purification system, and emission sources. Continuous Air Monitors (CAMs) are installed in these facilities to monitor the activity concentration of radioactive aerosols during both routine operations and any malfunctioning conditions. Typically, CAM placement is determined by the direction of maximum airflow. However, aerosols do not always adhere to the behaviour of airstreams, raising concerns about the suitability of CAM placement. To address this issue, this study employs software that integrates aerosol dynamics with computational fluid dynamics to calculate the CAM Placement Parameter. This parameter is derived from the peak aerosol concentration and the lag time to reach the specified CAM location, indicating the relative merit of positioning CAMs in a radiological facility under varying ventilation rates. The findings suggest that the coupled aerosol-fluid dynamics model accurately predicts the optimal placement of CAMs in workplace environments, thereby minimizing occupational exposure.
期刊介绍:
ASE is an international journal that publishes high-quality papers, communications, and discussion that advance aerosol science and engineering. Acceptable article forms include original research papers, review articles, letters, commentaries, news and views, research highlights, editorials, correspondence, and new-direction columns. ASE emphasizes the application of aerosol technology to both environmental and technical issues, and it provides a platform not only for basic research but also for industrial interests. We encourage scientists and researchers to submit papers that will advance our knowledge of aerosols and highlight new approaches for aerosol studies and new technologies for pollution control. ASE promotes cutting-edge studies of aerosol science and state-of-art instrumentation, but it is not limited to academic topics and instead aims to bridge the gap between basic science and industrial applications. ASE accepts papers covering a broad range of aerosol-related topics, including aerosol physical and chemical properties, composition, formation, transport and deposition, numerical simulation of air pollution incidents, chemical processes in the atmosphere, aerosol control technologies and industrial applications. In addition, ASE welcomes papers involving new and advanced methods and technologies that focus on aerosol pollution, sampling and analysis, including the invention and development of instrumentation, nanoparticle formation, nano technology, indoor and outdoor air quality monitoring, air pollution control, and air pollution remediation and feasibility assessments.