Lax representations and variational Poisson structures for magnetohydrodynamics equations

IF 1.6 3区 数学 Q1 MATHEMATICS
Oleg I. Morozov
{"title":"Lax representations and variational Poisson structures for magnetohydrodynamics equations","authors":"Oleg I. Morozov","doi":"10.1007/s13324-025-01119-w","DOIUrl":null,"url":null,"abstract":"<div><p>We find two Lax representations for the reduced magnetohydrodynamics equations (<span>rmhd</span>) and construct a local variational Poisson structure (a Hamiltonian operator) for them. Its inverse defines a nonlocal symplectic structure for the same equations. We describe the action of both operators on the second-order cosymmetries and on the infinitesimal contact symmetries of <span>rmhd</span>, respectively. The reduction of <span>rmhd</span> by the symmetry of shifts along the <i>z</i>-axis coincides with the equations of two-dimensional ideal magnetohydrodynamics (<span>imhd</span>). Applied to the Lax representations and the variational Poisson structure of <span>rmhd</span>, the reduction provides analogous constructions for <span>imhd</span>.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"15 5","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-025-01119-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We find two Lax representations for the reduced magnetohydrodynamics equations (rmhd) and construct a local variational Poisson structure (a Hamiltonian operator) for them. Its inverse defines a nonlocal symplectic structure for the same equations. We describe the action of both operators on the second-order cosymmetries and on the infinitesimal contact symmetries of rmhd, respectively. The reduction of rmhd by the symmetry of shifts along the z-axis coincides with the equations of two-dimensional ideal magnetohydrodynamics (imhd). Applied to the Lax representations and the variational Poisson structure of rmhd, the reduction provides analogous constructions for imhd.

磁流体动力学方程的松弛表示和变分泊松结构
我们找到了简化磁流体动力学方程(rmhd)的两个Lax表示,并为它们构造了一个局部变分泊松结构(哈密顿算子)。它的逆定义了同一方程的非局部辛结构。我们分别描述了这两个算子在rmhd的二阶共对称和无穷小接触对称上的作用。通过沿z轴移动的对称性来减少rmhd与二维理想磁流体动力学方程(imhd)一致。应用于rmhd的Lax表示和变分泊松结构,提供了imhd的类似结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信