Modulation instability and nonlinear dynamics in the (2 + 1)-dimensional complex mKdV system: innovative soliton solutions via Jacobi elliptic function method

IF 2.1 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Pramana Pub Date : 2025-08-29 DOI:10.1007/s12043-025-02970-z
Muhammad Ishfaq Khan, H W A Riaz, Saira Basharat, Aamir Farooq, Jamilu Sabi’u
{"title":"Modulation instability and nonlinear dynamics in the (2 + 1)-dimensional complex mKdV system: innovative soliton solutions via Jacobi elliptic function method","authors":"Muhammad Ishfaq Khan,&nbsp;H W A Riaz,&nbsp;Saira Basharat,&nbsp;Aamir Farooq,&nbsp;Jamilu Sabi’u","doi":"10.1007/s12043-025-02970-z","DOIUrl":null,"url":null,"abstract":"<div><p>This paper explores the (2 + 1)-dimensional complex modified Korteweg–de Vries (cmKdV) system using the Jacobi elliptic function expansion method. The primary goal is to analyse modulation instability and derive innovative soliton solutions. We then solve the resulting equation using the Jacobi elliptic function expansion method, which is capable of producing a wide variety of solutions, including periodic, kink and bright soliton solutions. Figures show graphical representations of the found solutions in multiple-dimension computations using 2D, 3D and contour sketches. The findings indicate that the technique used are effective and reliable tools that can be used to solve a variety of nonlinear differential equations.</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":"99 3","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-025-02970-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the (2 + 1)-dimensional complex modified Korteweg–de Vries (cmKdV) system using the Jacobi elliptic function expansion method. The primary goal is to analyse modulation instability and derive innovative soliton solutions. We then solve the resulting equation using the Jacobi elliptic function expansion method, which is capable of producing a wide variety of solutions, including periodic, kink and bright soliton solutions. Figures show graphical representations of the found solutions in multiple-dimension computations using 2D, 3D and contour sketches. The findings indicate that the technique used are effective and reliable tools that can be used to solve a variety of nonlinear differential equations.

(2 + 1)维复杂mKdV系统的调制不稳定性和非线性动力学:基于Jacobi椭圆函数方法的新颖孤子解
本文利用Jacobi椭圆函数展开方法研究了(2 + 1)维复修正Korteweg-de Vries (cmKdV)系统。主要目标是分析调制不稳定性并推导出创新的孤子解。然后,我们使用Jacobi椭圆函数展开法求解所得方程,该方法能够产生各种各样的解,包括周期解,扭结解和亮孤子解。图中显示了使用二维、三维和轮廓草图在多维计算中找到的解决方案的图形表示。结果表明,所采用的技术是有效和可靠的工具,可用于解决各种非线性微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pramana
Pramana 物理-物理:综合
CiteScore
3.60
自引率
7.10%
发文量
206
审稿时长
3 months
期刊介绍: Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信