Quantum Resource Estimates for Computing Binary Elliptic Curve Discrete Logarithms

IF 4.6
Michael Garn;Angus Kan
{"title":"Quantum Resource Estimates for Computing Binary Elliptic Curve Discrete Logarithms","authors":"Michael Garn;Angus Kan","doi":"10.1109/TQE.2025.3586541","DOIUrl":null,"url":null,"abstract":"We perform logical and physical resource estimation for computing binary elliptic curve discrete logarithms using Shor's algorithm on fault-tolerant quantum computers. We adopt a windowed approach to design our circuit implementation of the algorithm, which comprises repeated applications of elliptic curve point addition operations and table look-ups. Unlike previous work, the point addition operation is implemented exactly, including all exceptional cases. We provide exact logical gate and qubit counts of our algorithm for cryptographically relevant binary field sizes. Furthermore, we estimate the hardware footprint and runtime of our algorithm executed on surface-code matter-based quantum computers with a baseline architecture, where logical qubits have nearest-neighbor connectivity, and on a surface-code photonic fusion-based quantum computer with an active-volume architecture, which enjoys a logarithmic number of nonlocal connections between logical qubits. At 10<inline-formula><tex-math>$\\%$</tex-math></inline-formula> threshold and compared to a baseline device with a 1-<inline-formula><tex-math>$\\mu \\text{s}$</tex-math></inline-formula> code cycle, our algorithm runs <inline-formula><tex-math>$\\gtrsim$</tex-math></inline-formula> 2–20 times faster, depending on the operating regime of the hardware and over all considered field sizes, on a photonic active-volume device.","PeriodicalId":100644,"journal":{"name":"IEEE Transactions on Quantum Engineering","volume":"6 ","pages":"1-23"},"PeriodicalIF":4.6000,"publicationDate":"2025-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11072281","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Quantum Engineering","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11072281/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We perform logical and physical resource estimation for computing binary elliptic curve discrete logarithms using Shor's algorithm on fault-tolerant quantum computers. We adopt a windowed approach to design our circuit implementation of the algorithm, which comprises repeated applications of elliptic curve point addition operations and table look-ups. Unlike previous work, the point addition operation is implemented exactly, including all exceptional cases. We provide exact logical gate and qubit counts of our algorithm for cryptographically relevant binary field sizes. Furthermore, we estimate the hardware footprint and runtime of our algorithm executed on surface-code matter-based quantum computers with a baseline architecture, where logical qubits have nearest-neighbor connectivity, and on a surface-code photonic fusion-based quantum computer with an active-volume architecture, which enjoys a logarithmic number of nonlocal connections between logical qubits. At 10$\%$ threshold and compared to a baseline device with a 1-$\mu \text{s}$ code cycle, our algorithm runs $\gtrsim$ 2–20 times faster, depending on the operating regime of the hardware and over all considered field sizes, on a photonic active-volume device.
计算二元椭圆曲线离散对数的量子资源估计
我们在容错量子计算机上使用肖尔算法对计算二元椭圆曲线离散对数进行了逻辑和物理资源估计。我们采用窗口方法设计算法的电路实现,其中包括椭圆曲线点加法运算和表查找的重复应用。与以前的工作不同,点加法操作精确地实现,包括所有例外情况。我们为密码学相关的二进制字段大小提供了我们算法的精确逻辑门和量子位计数。此外,我们估计了我们的算法在具有基线架构的基于表面代码的物质的量子计算机上执行的硬件足迹和运行时间,其中逻辑量子位具有最近邻连接,以及具有活动卷架构的基于表面代码光子融合的量子计算机,它在逻辑量子位之间具有对数数量的非局部连接。10 \ %美元阈值和基线设备相比,1 -{年代}\μ\文本代码美元周期,我们的算法运行\ gtrsim美元2 - 20倍,根据硬件的操作制度和对所有字段的大小,在光子设备容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信