Sequence Reconstruction for the Single-Deletion Single-Substitution Channel

IF 2.2
Wentu Song;Kui Cai;Tony Q. S. Quek
{"title":"Sequence Reconstruction for the Single-Deletion Single-Substitution Channel","authors":"Wentu Song;Kui Cai;Tony Q. S. Quek","doi":"10.1109/JSAIT.2025.3597013","DOIUrl":null,"url":null,"abstract":"The central problem in sequence reconstruction is to find the minimum number of distinct channel outputs required to uniquely reconstruct the transmitted sequence. According to Levenshtein’s work in 2001, this number is determined by the size of the maximum intersection between the error balls of any two distinct input sequences of the channel. In this work, we study the sequence reconstruction problem for the q-ary single-deletion single-substitution channel for any fixed integer <inline-formula> <tex-math>$q\\geq 2$ </tex-math></inline-formula>. First, we prove that if two q-ary sequences of length n have a Hamming distance <inline-formula> <tex-math>$d\\geq 2$ </tex-math></inline-formula>, then the intersection size of their error balls is upper bounded by <inline-formula> <tex-math>$2qn-3q-2-\\delta _{q,2}$ </tex-math></inline-formula>, where <inline-formula> <tex-math>$\\delta _{i,j}$ </tex-math></inline-formula> is the Kronecker delta, and this bound is achievable. Next, we prove that if two q-ary sequences have a Hamming distance <inline-formula> <tex-math>$d\\geq 3$ </tex-math></inline-formula> and a Levenshtein distance <inline-formula> <tex-math>$d_{\\text {L}}\\geq 2$ </tex-math></inline-formula>, then the intersection size of their error balls is upper bounded by <inline-formula> <tex-math>$3q+11$ </tex-math></inline-formula>, and we show that the gap between this bound and the tight bound is at most 2.","PeriodicalId":73295,"journal":{"name":"IEEE journal on selected areas in information theory","volume":"6 ","pages":"232-247"},"PeriodicalIF":2.2000,"publicationDate":"2025-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in information theory","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11121295/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The central problem in sequence reconstruction is to find the minimum number of distinct channel outputs required to uniquely reconstruct the transmitted sequence. According to Levenshtein’s work in 2001, this number is determined by the size of the maximum intersection between the error balls of any two distinct input sequences of the channel. In this work, we study the sequence reconstruction problem for the q-ary single-deletion single-substitution channel for any fixed integer $q\geq 2$ . First, we prove that if two q-ary sequences of length n have a Hamming distance $d\geq 2$ , then the intersection size of their error balls is upper bounded by $2qn-3q-2-\delta _{q,2}$ , where $\delta _{i,j}$ is the Kronecker delta, and this bound is achievable. Next, we prove that if two q-ary sequences have a Hamming distance $d\geq 3$ and a Levenshtein distance $d_{\text {L}}\geq 2$ , then the intersection size of their error balls is upper bounded by $3q+11$ , and we show that the gap between this bound and the tight bound is at most 2.
单缺失单替换通道的序列重建
序列重建的核心问题是找到唯一重建传输序列所需的不同信道输出的最小数量。根据Levenshtein在2001年的工作,这个数字是由任意两个不同的信道输入序列的误差球之间的最大交集的大小决定的。在这项工作中,我们研究了任意固定整数$q\geq 2$的q元单删除单替换通道的序列重建问题。首先,我们证明了如果两个长度为n的q-ary序列有一个汉明距离$d\geq 2$,那么它们的误差球的相交大小的上界为$2qn-3q-2-\delta _{q,2}$,其中$\delta _{i,j}$为Kronecker delta,并且这个上界是可以实现的。接下来,我们证明了如果两个q-ary序列具有Hamming距离$d\geq 3$和Levenshtein距离$d_{\text {L}}\geq 2$,那么它们的误差球相交大小的上界为$3q+11$,并证明了该界与紧界之间的差距不超过2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信