PLDF-S3: Pseudo-Label-Driven Framework for Offshore to Inshore Unsupervised SAR Image Ship Segmentation

IF 4.4
Wentao Li;Xinyu Wang;Haixia Xu;Liming Yuan;Furong Shi;Xianbin Wen;Jiao Liu
{"title":"PLDF-S3: Pseudo-Label-Driven Framework for Offshore to Inshore Unsupervised SAR Image Ship Segmentation","authors":"Wentao Li;Xinyu Wang;Haixia Xu;Liming Yuan;Furong Shi;Xianbin Wen;Jiao Liu","doi":"10.1109/LGRS.2025.3595937","DOIUrl":null,"url":null,"abstract":"Recently, unsupervised ship segmentation methods for synthetic aperture radar (SAR) images have achieved promising results in offshore scenes. However, these methods generate a large number of false alarms in inshore scenes. To address this issue, we propose the pseudo-label-driven framework for offshore to inshore SAR image ship segmentation (PLDF-S3), which leverages ship segmentation results from offshore scenes to assist inshore ship segmentation. In particular, to account for the anisotropy of ships, which are characterized by a dominant long-axis direction, we design a directional feature enhancement module (DFEM) in PLDF-S3 to extract ship features with varying orientations. Additionally, due to the diverse size variations of ships in SAR images, we propose a hierarchical context enhancement module (HCEM) to capture ship features at different scales. Experimental results show that the proposed unsupervised PLDF-S3 achieves comparable segmentation performance than several supervised methods under challenging inshore scenarios.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11113265/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, unsupervised ship segmentation methods for synthetic aperture radar (SAR) images have achieved promising results in offshore scenes. However, these methods generate a large number of false alarms in inshore scenes. To address this issue, we propose the pseudo-label-driven framework for offshore to inshore SAR image ship segmentation (PLDF-S3), which leverages ship segmentation results from offshore scenes to assist inshore ship segmentation. In particular, to account for the anisotropy of ships, which are characterized by a dominant long-axis direction, we design a directional feature enhancement module (DFEM) in PLDF-S3 to extract ship features with varying orientations. Additionally, due to the diverse size variations of ships in SAR images, we propose a hierarchical context enhancement module (HCEM) to capture ship features at different scales. Experimental results show that the proposed unsupervised PLDF-S3 achieves comparable segmentation performance than several supervised methods under challenging inshore scenarios.
伪标签驱动的近海到近海无监督SAR图像船舶分割框架
近年来,合成孔径雷达(SAR)图像的无监督船舶分割方法在近海场景中取得了良好的效果。然而,这些方法在近岸场景中产生了大量的虚警。为了解决这个问题,我们提出了用于近海到近岸SAR图像船舶分割的伪标签驱动框架(PLDF-S3),该框架利用海上场景的船舶分割结果来辅助近岸船舶分割。针对船舶以长轴方向为主要特征的各向异性,我们在PLDF-S3中设计了方向性特征增强模块(directional feature enhancement module, DFEM)来提取不同方向的船舶特征。此外,由于SAR图像中船舶的不同尺寸变化,我们提出了一个分层上下文增强模块(HCEM)来捕获不同尺度的船舶特征。实验结果表明,在具有挑战性的近海场景下,所提出的无监督PLDF-S3分割方法的分割性能与几种有监督方法相当。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信