Spatial–Spectral Hypergraph Dynamic Gating MLP Network for Hyperspectral Image Classification

IF 4.4
Yang-Jun Deng;Yanglan Li;Longfei Ren;Si-Qiao Tan;Qian Du
{"title":"Spatial–Spectral Hypergraph Dynamic Gating MLP Network for Hyperspectral Image Classification","authors":"Yang-Jun Deng;Yanglan Li;Longfei Ren;Si-Qiao Tan;Qian Du","doi":"10.1109/LGRS.2025.3600896","DOIUrl":null,"url":null,"abstract":"The advancement of spaceborne hyperspectral remote sensing technology has led to the widespread use of hyperspectral imaging, due to its ability to detect subtle spectral differences. Most of the traditional machine-learning (ML) methods and popular deep-learning (DL) architectures for hyperspectral image (HSI) classification either fail to capture global features or demand high computational resources. While multilayer perceptron (MLP)-based models offer a computationally efficient alternative, they struggle to capture manifold structures and are susceptible to overfitting. To address these challenges, we propose a novel spatial–spectral hypergraph dynamic gating MLP (S2H-DGMLP) framework tailored for HSI classification. The spatial–spectral hypergraph enhances discriminative power by modeling high-order spatial and spectral correlations, jointly optimizing local spatial features and global spectral features to produce more separable feature representations in the embedding space. Within this framework, the channel and spatial projections are statically parameterized using MLP, while the dynamic gating MLP (DGMLP) block captures global contextual information. The dynamic gating mechanism within the DGMLP block automatically adjusts the segmentation ratio to balance spatial and spectral contributions, while incorporating complex nonlinear combinations to improve feature representation. Experimental results on the Pavia University and Houston datasets demonstrate that S2H-DGMLP significantly improves classification performance, confirming its effectiveness in HSI classification tasks.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11131180/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The advancement of spaceborne hyperspectral remote sensing technology has led to the widespread use of hyperspectral imaging, due to its ability to detect subtle spectral differences. Most of the traditional machine-learning (ML) methods and popular deep-learning (DL) architectures for hyperspectral image (HSI) classification either fail to capture global features or demand high computational resources. While multilayer perceptron (MLP)-based models offer a computationally efficient alternative, they struggle to capture manifold structures and are susceptible to overfitting. To address these challenges, we propose a novel spatial–spectral hypergraph dynamic gating MLP (S2H-DGMLP) framework tailored for HSI classification. The spatial–spectral hypergraph enhances discriminative power by modeling high-order spatial and spectral correlations, jointly optimizing local spatial features and global spectral features to produce more separable feature representations in the embedding space. Within this framework, the channel and spatial projections are statically parameterized using MLP, while the dynamic gating MLP (DGMLP) block captures global contextual information. The dynamic gating mechanism within the DGMLP block automatically adjusts the segmentation ratio to balance spatial and spectral contributions, while incorporating complex nonlinear combinations to improve feature representation. Experimental results on the Pavia University and Houston datasets demonstrate that S2H-DGMLP significantly improves classification performance, confirming its effectiveness in HSI classification tasks.
用于高光谱图像分类的空间光谱超图动态门控MLP网络
星载高光谱遥感技术的进步使得高光谱成像技术得到了广泛的应用,因为它能够探测到细微的光谱差异。大多数用于高光谱图像(HSI)分类的传统机器学习(ML)方法和流行的深度学习(DL)架构要么无法捕获全局特征,要么需要大量的计算资源。虽然基于多层感知器(MLP)的模型提供了一种计算效率高的替代方案,但它们难以捕获流形结构,并且容易过度拟合。为了解决这些挑战,我们提出了一种适合HSI分类的新型空间光谱超图动态门控MLP (S2H-DGMLP)框架。空间-光谱超图通过建模高阶空间和光谱相关性,共同优化局部空间特征和全局光谱特征,从而在嵌入空间中产生更多可分离的特征表示,从而增强了判别能力。在该框架中,通道和空间投影使用MLP静态参数化,而动态门控MLP (dglp)块捕获全局上下文信息。DGMLP块内的动态门控机制自动调整分割比例以平衡空间和光谱贡献,同时结合复杂的非线性组合以改善特征表示。在Pavia University和Houston数据集上的实验结果表明,S2H-DGMLP显著提高了分类性能,证实了其在HSI分类任务中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信