Compressive Sensing-Marchenko Multiple Elimination in Complex Field Land Seismic Data

IF 4.4
Haoxin Zhu;Zhangqing Sun;Jianwei Nie;Bin Hu;Fei Jiang;Fuxing Han;Yang Zhang;Mingchen Liu;Zhenghui Gao
{"title":"Compressive Sensing-Marchenko Multiple Elimination in Complex Field Land Seismic Data","authors":"Haoxin Zhu;Zhangqing Sun;Jianwei Nie;Bin Hu;Fei Jiang;Fuxing Han;Yang Zhang;Mingchen Liu;Zhenghui Gao","doi":"10.1109/LGRS.2025.3601629","DOIUrl":null,"url":null,"abstract":"In seismic exploration, the multiple suppression is crucial for accurate subsurface imaging and resource identification. Internal multiples, generated by multiple reflections at impedance interfaces, act as interference signals that can mislead resource exploration. Compared to traditional methods, the conventional Marchenko multiple elimination (C-MME) method allows for the direct extraction of primary waves from seismic records without requiring a macro velocity model or predictive subtraction, thereby preserving effective signals. However, challenges, such as low signal-to-noise ratios (SNRs) and high-density sampling requirements, have hindered its application to field land seismic data. To address these challenges of C-MME in field seismic data processing, we propose a compressive sensing-based Marchenko multiple elimination (CS-MME) method, which incorporates efficient denoising, reconstruction, and deconvolution capabilities. In this study, the CS-MME method has demonstrated exceptional performance in processing field land seismic data, successfully overcoming the aforementioned challenges. marking the first successful implementation of Marchenko multiple elimination (MME) on field land data.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11134425/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In seismic exploration, the multiple suppression is crucial for accurate subsurface imaging and resource identification. Internal multiples, generated by multiple reflections at impedance interfaces, act as interference signals that can mislead resource exploration. Compared to traditional methods, the conventional Marchenko multiple elimination (C-MME) method allows for the direct extraction of primary waves from seismic records without requiring a macro velocity model or predictive subtraction, thereby preserving effective signals. However, challenges, such as low signal-to-noise ratios (SNRs) and high-density sampling requirements, have hindered its application to field land seismic data. To address these challenges of C-MME in field seismic data processing, we propose a compressive sensing-based Marchenko multiple elimination (CS-MME) method, which incorporates efficient denoising, reconstruction, and deconvolution capabilities. In this study, the CS-MME method has demonstrated exceptional performance in processing field land seismic data, successfully overcoming the aforementioned challenges. marking the first successful implementation of Marchenko multiple elimination (MME) on field land data.
复杂野外陆地地震数据的压缩感知-马尔琴科多重消除
在地震勘探中,多重抑制对准确的地下成像和资源识别至关重要。内部倍数由阻抗界面上的多次反射产生,作为干扰信号,可能会误导资源勘探。与传统方法相比,传统的Marchenko多重消除(C-MME)方法允许直接从地震记录中提取主波,而不需要宏观速度模型或预测减法,从而保留有效信号。然而,诸如低信噪比(SNRs)和高密度采样要求等挑战阻碍了其在现场陆地地震数据中的应用。为了解决C-MME在现场地震数据处理中的这些挑战,我们提出了一种基于压缩感知的马尔琴科多重消除(CS-MME)方法,该方法结合了高效的去噪、重建和反卷积能力。在本研究中,CS-MME方法在处理现场陆地地震数据方面表现出优异的性能,成功地克服了上述挑战。这标志着Marchenko多重消去法(MME)首次在野外土地数据上成功实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信