Sea-Undistort: A Dataset for Through-Water Image Restoration in High-Resolution Airborne Bathymetric Mapping

IF 4.4
Maximilian Kromer;Panagiotis Agrafiotis;Begüm Demir
{"title":"Sea-Undistort: A Dataset for Through-Water Image Restoration in High-Resolution Airborne Bathymetric Mapping","authors":"Maximilian Kromer;Panagiotis Agrafiotis;Begüm Demir","doi":"10.1109/LGRS.2025.3601239","DOIUrl":null,"url":null,"abstract":"Accurate image-based bathymetric mapping in shallow waters remains challenging due to the complex optical distortions, such as wave-induced patterns, scattering, and sunglint, introduced by the dynamic water surface, the water column properties, and solar illumination. In this work, we introduce Sea-Undistort, a comprehensive synthetic dataset of 1200 paired <inline-formula> <tex-math>$512\\times 512$ </tex-math></inline-formula> through-water scenes rendered in Blender. Each pair comprises a distortion-free and a distorted view, featuring realistic water effects, such as sun glint, waves, and scattering over diverse seabeds. Accompanied by per-image metadata, such as camera parameters, sun position, and average depth, Sea-Undistort enables supervised training that is otherwise infeasible in real environments. We use Sea-Undistort to benchmark two state-of-the-art image restoration methods alongside an enhanced lightweight diffusion-based framework with an early fusion sun-glint mask. When applied to real aerial data, the enhanced diffusion model delivers more complete digital surface models (DSMs) of the seabed, especially in deeper areas, reduces bathymetric errors, suppresses glint and scattering, and crisply restores fine seabed details. Dataset, weights, and code are publicly available at <uri>https://www.magicbathy.eu/Sea-Undistort.html</uri>.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=11132387","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11132387/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate image-based bathymetric mapping in shallow waters remains challenging due to the complex optical distortions, such as wave-induced patterns, scattering, and sunglint, introduced by the dynamic water surface, the water column properties, and solar illumination. In this work, we introduce Sea-Undistort, a comprehensive synthetic dataset of 1200 paired $512\times 512$ through-water scenes rendered in Blender. Each pair comprises a distortion-free and a distorted view, featuring realistic water effects, such as sun glint, waves, and scattering over diverse seabeds. Accompanied by per-image metadata, such as camera parameters, sun position, and average depth, Sea-Undistort enables supervised training that is otherwise infeasible in real environments. We use Sea-Undistort to benchmark two state-of-the-art image restoration methods alongside an enhanced lightweight diffusion-based framework with an early fusion sun-glint mask. When applied to real aerial data, the enhanced diffusion model delivers more complete digital surface models (DSMs) of the seabed, especially in deeper areas, reduces bathymetric errors, suppresses glint and scattering, and crisply restores fine seabed details. Dataset, weights, and code are publicly available at https://www.magicbathy.eu/Sea-Undistort.html.
sea - undistortion:高分辨率航空测深制图中通过水图像恢复的数据集
由于动态水面、水柱特性和太阳光照等因素导致的复杂光学畸变,如波浪诱导模式、散射和太阳晖射等,在浅水区进行精确的基于图像的水深测绘仍然具有挑战性。在这项工作中,我们介绍了sea - undistortion,这是一个综合的合成数据集,由1200对$512\乘以512$通过Blender渲染的水场景组成。每一对都包含一个无扭曲和扭曲的视图,具有逼真的水效果,如阳光闪烁,波浪和散射在不同的海床上。伴随着每个图像的元数据,如相机参数、太阳位置和平均深度,sea - undistortion使监督训练成为可能,否则在真实环境中是不可行的。我们使用sea - undistortion对两种最先进的图像恢复方法进行基准测试,以及增强的轻量级扩散框架和早期融合太阳闪烁面罩。当应用于实际航空数据时,增强的扩散模型提供了更完整的海底数字表面模型(DSMs),特别是在较深的区域,减少了水深误差,抑制了闪烁和散射,并清晰地恢复了海底的精细细节。数据集、权重和代码可在https://www.magicbathy.eu/Sea-Undistort.html上公开获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信