Multiscale Low-Rank and Sparse Attention-Based Transformer for Hyperspectral Image Classification

IF 4.4
Jinliang An;Longlong Dai;Muzi Wang;Weidong Zhang
{"title":"Multiscale Low-Rank and Sparse Attention-Based Transformer for Hyperspectral Image Classification","authors":"Jinliang An;Longlong Dai;Muzi Wang;Weidong Zhang","doi":"10.1109/LGRS.2025.3601670","DOIUrl":null,"url":null,"abstract":"Recently, transformer-based approaches have emerged as powerful tools for hyperspectral image (HSI) classification. HSI inherently exhibits low-rank and sparse properties due to spatial continuity and spectral redundancy. However, most existing methods directly adopt standard transformer architectures, overlooking the distinctive priors inherent in HSI, which limits the classification performance and modeling efficiency. To address these challenges, this letter proposes a multiscale low-rank and sparse transformer (MLSFormer) that effectively integrates both low-rank and sparse priors. Specifically, we leverage tensor low-rank decomposition (TLRD) to factorize the query, key, and value matrices into low-rank tensor products, capturing dominant low-rank structures. In parallel, we introduce a sparse attention mechanism to retain only the most important connections. Furthermore, a multiscale attention mechanism is designed to hierarchically partition attention heads into global, medium, and local groups, each assigned tailored decomposition ranks and sparsity ratios, enabling comprehensive multiscale feature extraction. Extensive experiments on three benchmark datasets demonstrate that MLSFormer achieves superior classification performance compared to state-of-the-art methods.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11134391/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, transformer-based approaches have emerged as powerful tools for hyperspectral image (HSI) classification. HSI inherently exhibits low-rank and sparse properties due to spatial continuity and spectral redundancy. However, most existing methods directly adopt standard transformer architectures, overlooking the distinctive priors inherent in HSI, which limits the classification performance and modeling efficiency. To address these challenges, this letter proposes a multiscale low-rank and sparse transformer (MLSFormer) that effectively integrates both low-rank and sparse priors. Specifically, we leverage tensor low-rank decomposition (TLRD) to factorize the query, key, and value matrices into low-rank tensor products, capturing dominant low-rank structures. In parallel, we introduce a sparse attention mechanism to retain only the most important connections. Furthermore, a multiscale attention mechanism is designed to hierarchically partition attention heads into global, medium, and local groups, each assigned tailored decomposition ranks and sparsity ratios, enabling comprehensive multiscale feature extraction. Extensive experiments on three benchmark datasets demonstrate that MLSFormer achieves superior classification performance compared to state-of-the-art methods.
基于多尺度低秩稀疏关注的高光谱图像分类变压器
最近,基于变压器的方法已经成为高光谱图像(HSI)分类的强大工具。由于空间连续性和频谱冗余,HSI固有地表现出低秩和稀疏特性。然而,大多数现有方法直接采用标准变压器架构,忽略了HSI固有的独特先验,这限制了分类性能和建模效率。为了解决这些挑战,这封信提出了一种多尺度低秩稀疏变压器(MLSFormer),它有效地集成了低秩和稀疏先验。具体来说,我们利用张量低秩分解(TLRD)将查询、键和值矩阵分解为低秩张量积,捕获主要的低秩结构。同时,我们引入了一种稀疏注意机制,只保留最重要的连接。此外,设计了一种多尺度注意机制,将注意头分层划分为全局、中等和局部组,每个组分配定制的分解等级和稀疏度比,从而实现全面的多尺度特征提取。在三个基准数据集上进行的大量实验表明,与最先进的方法相比,MLSFormer具有更好的分类性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信