ProFus: Progressive Radar–Vision Heterogeneous Modality Fusion for Maritime Target Detection

IF 4.4
Jingang Wang;Shikai Wu;Peng Liu
{"title":"ProFus: Progressive Radar–Vision Heterogeneous Modality Fusion for Maritime Target Detection","authors":"Jingang Wang;Shikai Wu;Peng Liu","doi":"10.1109/LGRS.2025.3601131","DOIUrl":null,"url":null,"abstract":"Maritime monitoring is crucial in both civilian and military applications, with shore-based radar and visual systems widely used due to their cost effectiveness. However, single-sensor methods have notable limitations: radar systems, while offering wide detection coverage, suffer from high false alarm rates and lack detailed target information, whereas visual systems provide rich details but perform poorly in adverse weather conditions such as rain and fog. To address these issues, this letter proposes a progressive radar–vision fusion method for surface target detection. Due to the significant differences in data characteristics between radar and visual sensors, direct fusion is nearly infeasible. Instead, the proposed method adopts a stepwise fusion strategy, consisting of coordinate calibration, shallow feature fusion, and deep feature integration. Experimental results show that this approach achieves an <inline-formula> <tex-math>$\\text {mAP}_{50}$ </tex-math></inline-formula> of 86.7% and an <inline-formula> <tex-math>$\\text {mAP}_{75}$ </tex-math></inline-formula> of 54.5%, outperforming YOLOv10 by 1.0% and 1.5%, respectively. Moreover, the proposed method significantly surpasses existing state-of-the-art radar–vision fusion approaches, demonstrating its superior effectiveness in complex environments.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11133591/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Maritime monitoring is crucial in both civilian and military applications, with shore-based radar and visual systems widely used due to their cost effectiveness. However, single-sensor methods have notable limitations: radar systems, while offering wide detection coverage, suffer from high false alarm rates and lack detailed target information, whereas visual systems provide rich details but perform poorly in adverse weather conditions such as rain and fog. To address these issues, this letter proposes a progressive radar–vision fusion method for surface target detection. Due to the significant differences in data characteristics between radar and visual sensors, direct fusion is nearly infeasible. Instead, the proposed method adopts a stepwise fusion strategy, consisting of coordinate calibration, shallow feature fusion, and deep feature integration. Experimental results show that this approach achieves an $\text {mAP}_{50}$ of 86.7% and an $\text {mAP}_{75}$ of 54.5%, outperforming YOLOv10 by 1.0% and 1.5%, respectively. Moreover, the proposed method significantly surpasses existing state-of-the-art radar–vision fusion approaches, demonstrating its superior effectiveness in complex environments.
用于海上目标检测的渐进式雷达-视觉异构模态融合
海上监测在民用和军事应用中都至关重要,由于其成本效益,岸基雷达和视觉系统被广泛使用。然而,单传感器方法有明显的局限性:雷达系统虽然提供广泛的探测覆盖,但存在高误报率和缺乏详细的目标信息,而视觉系统提供丰富的细节,但在恶劣的天气条件下(如雨和雾)表现不佳。为了解决这些问题,本文提出了一种用于表面目标检测的渐进雷达-视觉融合方法。由于雷达和视觉传感器之间数据特征的显著差异,直接融合几乎是不可行的。该方法采用坐标标定、浅特征融合和深特征融合的分步融合策略。实验结果表明,该方法的$\text {mAP}_{50}$的准确率为86.7%,$\text {mAP}_{75}$的准确率为54.5%,分别优于YOLOv10算法1.0%和1.5%。此外,该方法明显优于现有的最先进的雷达-视觉融合方法,在复杂环境中显示出优越的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信