Sea Clutter Influencing Factors Analysis and Parameter Estimation Based on Oceanographic Observations

IF 4.4
Xian Yu;Yubing Han;Binyun Yan;Weixing Sheng
{"title":"Sea Clutter Influencing Factors Analysis and Parameter Estimation Based on Oceanographic Observations","authors":"Xian Yu;Yubing Han;Binyun Yan;Weixing Sheng","doi":"10.1109/LGRS.2025.3596590","DOIUrl":null,"url":null,"abstract":"Accurate and robust sea clutter modeling and parameter estimation are foundational for target detection. Traditional modeling methods rely on measured data, while clutter modeling based on radar settings and oceanographic observations is an alternative. This letter leverages high-resolution sea clutter data from the Sea-Detecting Radar Data-Sharing Program (SDRDSP) to address this challenge. Three distribution types, which are generalized Pareto distribution (GPD), K distribution, and compound-Gaussian model with inverse Gaussian (CGIG), are considered. Using random forest (RF), we identify the most discriminative factors for distribution type classification: range and azimuth resolution cell (RARC), grazing angle, wave speed, wind speed, and significant wave height (SWH). Building on this, a stacking ensemble learning framework is proposed to effectively regress the shape and scale parameters from these optimized input features. Experiments validate the effectiveness of the proposed approach in distribution type classification and parameter estimation.","PeriodicalId":91017,"journal":{"name":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","volume":"22 ","pages":"1-5"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE geoscience and remote sensing letters : a publication of the IEEE Geoscience and Remote Sensing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11119684/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate and robust sea clutter modeling and parameter estimation are foundational for target detection. Traditional modeling methods rely on measured data, while clutter modeling based on radar settings and oceanographic observations is an alternative. This letter leverages high-resolution sea clutter data from the Sea-Detecting Radar Data-Sharing Program (SDRDSP) to address this challenge. Three distribution types, which are generalized Pareto distribution (GPD), K distribution, and compound-Gaussian model with inverse Gaussian (CGIG), are considered. Using random forest (RF), we identify the most discriminative factors for distribution type classification: range and azimuth resolution cell (RARC), grazing angle, wave speed, wind speed, and significant wave height (SWH). Building on this, a stacking ensemble learning framework is proposed to effectively regress the shape and scale parameters from these optimized input features. Experiments validate the effectiveness of the proposed approach in distribution type classification and parameter estimation.
海杂波影响因素分析及基于海洋观测的参数估计
准确、鲁棒的海杂波建模和参数估计是目标检测的基础。传统的建模方法依赖于测量数据,而基于雷达设置和海洋观测的杂波建模是一种替代方法。这封信利用来自海洋探测雷达数据共享计划(SDRDSP)的高分辨率海杂波数据来解决这一挑战。考虑了广义Pareto分布(GPD)、K分布(K)和复合高斯模型与逆高斯模型(CGIG)三种分布类型。利用随机森林(random forest, RF),我们确定了最具判别性的分布类型分类因子:距离和方位角分辨率单元(RARC)、放牧角、波速、风速和有效波高(SWH)。在此基础上,提出了一个堆叠集成学习框架,从这些优化的输入特征中有效地回归形状和尺度参数。实验验证了该方法在分布类型分类和参数估计方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信