Segmentation of stochastic scalar fields in unstructured meshes

IF 4.4 2区 地球科学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Tommaso Sorgente , Marianna Miola , Simone Pittaluga , Daniela Cabiddu , Michela Mortara , Marino Vetuschi Zuccolini
{"title":"Segmentation of stochastic scalar fields in unstructured meshes","authors":"Tommaso Sorgente ,&nbsp;Marianna Miola ,&nbsp;Simone Pittaluga ,&nbsp;Daniela Cabiddu ,&nbsp;Michela Mortara ,&nbsp;Marino Vetuschi Zuccolini","doi":"10.1016/j.cageo.2025.106041","DOIUrl":null,"url":null,"abstract":"<div><div>We present an algorithm for segmenting a (stochastic) scalar field defined on an unstructured mesh into a given number of parts. It can be applied to any type of mesh, such as triangular/tetrahedral meshes, 2D/3D grids, and generic polygonal/polyhedral meshes, inducing a classification of the mesh elements into regions with limited noise and smooth boundaries. The algorithm offers multiple output options, providing valuable information about the segmentation and the mesh regions in various file formats, thus making it suitable for practical applications. We show the algorithm at work in different application scenarios, ranging from environmental geochemistry to marine sciences and groundwater modeling, proving its efficacy and versatility.</div></div>","PeriodicalId":55221,"journal":{"name":"Computers & Geosciences","volume":"206 ","pages":"Article 106041"},"PeriodicalIF":4.4000,"publicationDate":"2025-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Geosciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0098300425001918","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We present an algorithm for segmenting a (stochastic) scalar field defined on an unstructured mesh into a given number of parts. It can be applied to any type of mesh, such as triangular/tetrahedral meshes, 2D/3D grids, and generic polygonal/polyhedral meshes, inducing a classification of the mesh elements into regions with limited noise and smooth boundaries. The algorithm offers multiple output options, providing valuable information about the segmentation and the mesh regions in various file formats, thus making it suitable for practical applications. We show the algorithm at work in different application scenarios, ranging from environmental geochemistry to marine sciences and groundwater modeling, proving its efficacy and versatility.
非结构化网格中随机标量场的分割
我们提出了一种将定义在非结构化网格上的(随机)标量场分割为给定数量的部分的算法。它可以应用于任何类型的网格,如三角形/四面体网格、2D/3D网格和一般多边形/多面体网格,将网格元素分类到具有有限噪声和光滑边界的区域。该算法提供了多种输出选项,以各种文件格式提供了关于分割和网格区域的有价值的信息,因此适合实际应用。我们展示了该算法在不同应用场景中的工作,从环境地球化学到海洋科学和地下水建模,证明了它的有效性和多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Geosciences
Computers & Geosciences 地学-地球科学综合
CiteScore
9.30
自引率
6.80%
发文量
164
审稿时长
3.4 months
期刊介绍: Computers & Geosciences publishes high impact, original research at the interface between Computer Sciences and Geosciences. Publications should apply modern computer science paradigms, whether computational or informatics-based, to address problems in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信