Investigation of the effect of micromachining parameters on the accuracy of micro-holes drilled by electric discharge machine

Adib Bin Rashid , Tasfia Saba , Sohag Das Sourav , Muhtasim Tajwar Ilhum , Mustakim Khondokar Bappy , Amanullah Tomal
{"title":"Investigation of the effect of micromachining parameters on the accuracy of micro-holes drilled by electric discharge machine","authors":"Adib Bin Rashid ,&nbsp;Tasfia Saba ,&nbsp;Sohag Das Sourav ,&nbsp;Muhtasim Tajwar Ilhum ,&nbsp;Mustakim Khondokar Bappy ,&nbsp;Amanullah Tomal","doi":"10.1016/j.rsurfi.2025.100603","DOIUrl":null,"url":null,"abstract":"<div><div>Electric Discharge Machining (EDM) is commonly used to machine hard materials. However, making small and precise features with EDM requires careful control of process parameters. This study presents an improved method to drill micro-holes in 1 mm-thick stainless steel (SS 316L) using a 0.6 mm copper electrode. The key novelty of this work lies in the integration of Response Surface Methodology (RSM) and Central Composite Design (CCD) for multi-response optimization, coupled with validation through experimental testing and microstructural analysis via Scanning Electron Microscopy (SEM). The influence of peak current (2–6 A), pulse-on time (10–40 μs), and pulse-off time (4–6 μs) was evaluated across response factors such as micro-hardness, edge deviation, overcut, material removal rate (MRR), taper angle, and tool wear rate (TWR). The optimal parameter combination is 2 A current, 16.577 μs pulse-on time, and 6 μs pulse-off time, yielded a high desirability score of 8.33, with corresponding results of 283.98 HV microhardness, 7.625 μm (entry) and 5.321 μm (exit) edge deviation, −43.691 μm (entry) and −166.271 μm (exit) overcut, 3.538 g/min MRR, taper angle of 1.877°, and 1.811 g/min TWR. Experimental validation showed strong concordance with the outcomes predicted by the RSM. SEM analysis revealed negligible recast layer and consistent taper geometry, affirming the reliability of the optimized conditions for high-precision micromachining.</div></div>","PeriodicalId":21085,"journal":{"name":"Results in Surfaces and Interfaces","volume":"20 ","pages":"Article 100603"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Surfaces and Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666845925001904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electric Discharge Machining (EDM) is commonly used to machine hard materials. However, making small and precise features with EDM requires careful control of process parameters. This study presents an improved method to drill micro-holes in 1 mm-thick stainless steel (SS 316L) using a 0.6 mm copper electrode. The key novelty of this work lies in the integration of Response Surface Methodology (RSM) and Central Composite Design (CCD) for multi-response optimization, coupled with validation through experimental testing and microstructural analysis via Scanning Electron Microscopy (SEM). The influence of peak current (2–6 A), pulse-on time (10–40 μs), and pulse-off time (4–6 μs) was evaluated across response factors such as micro-hardness, edge deviation, overcut, material removal rate (MRR), taper angle, and tool wear rate (TWR). The optimal parameter combination is 2 A current, 16.577 μs pulse-on time, and 6 μs pulse-off time, yielded a high desirability score of 8.33, with corresponding results of 283.98 HV microhardness, 7.625 μm (entry) and 5.321 μm (exit) edge deviation, −43.691 μm (entry) and −166.271 μm (exit) overcut, 3.538 g/min MRR, taper angle of 1.877°, and 1.811 g/min TWR. Experimental validation showed strong concordance with the outcomes predicted by the RSM. SEM analysis revealed negligible recast layer and consistent taper geometry, affirming the reliability of the optimized conditions for high-precision micromachining.
微加工参数对电火花机微孔加工精度影响的研究
电火花加工(EDM)通常用于加工硬材料。然而,用电火花加工制造小而精确的特征需要仔细控制工艺参数。本研究提出了一种使用0.6 mm铜电极在1 mm厚的不锈钢(SS 316L)上钻微孔的改进方法。这项工作的关键新颖之处在于将响应面法(RSM)和中心复合设计(CCD)结合起来进行多响应优化,并通过实验测试和扫描电子显微镜(SEM)的微观结构分析进行验证。通过显微硬度、边缘偏差、过切、材料去除率(MRR)、锥度角和刀具磨损率(TWR)等响应因子,评估峰值电流(2 ~ 6 A)、脉冲开启时间(10 ~ 40 μs)和脉冲关闭时间(4 ~ 6 μs)的影响。最佳参数组合为2 A电流、16.577 μs脉冲开启时间和6 μs脉冲关闭时间,优选得分为8.33分,对应的显微硬度为283.98 HV,边缘偏差为7.625 μm(入口)和5.321 μm(出口),过切为- 43.691 μm(入口)和- 166.271 μm(出口),MRR为3.538 g/min,锥角为1.877°,TWR为1.811 g/min。实验验证结果与RSM预测结果有较强的一致性。扫描电镜分析显示,重铸层可忽略不计,锥度几何形状一致,证实了优化条件对高精度微加工的可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信