Mingye Luan , Taha Hossein Rashidi , S. Travis Waller , David Rey
{"title":"Choice-driven bilevel optimization for multiclass traffic congestion management via eco-routing incentives","authors":"Mingye Luan , Taha Hossein Rashidi , S. Travis Waller , David Rey","doi":"10.1016/j.trb.2025.103289","DOIUrl":null,"url":null,"abstract":"<div><div>This study contributes to sustainable transportation modeling by proposing a user-centric approach to incentivize eco-routing travel behavior. We propose a novel reward credit scheme to provide path-based commuter incentives with the goal of reducing <span><math><mrow><mi>C</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> emissions and the total system travel time. The scheme takes into account multiple classes of commuters in the network that differ by their value of time and their vehicle energy type. Users subscribing to the scheme may earn monetary reward credits which act as incentives to promote sustainable mobility. Two types of reward credits are considered: subscription- and path-based credits. A discrete choice model is embedded within a traffic assignment model to capture the endogenous impact of commuters’ scheme adoption onto network congestion effects. We introduce a bilevel optimization formulation to determine optimal non-additive, path-based reward credits and subscription-based reward credits within a predefined budget under traffic equilibrium conditions. In this formulation, the follower problem is a parameterized multi-class user equilibrium traffic assignment problem with non-additive path costs and incorporates a logit choice model for scheme adoption. The leader represent the network regulator whose goal is to maximize social welfare by minimizing the total system travel time and total <span><math><mrow><mi>C</mi><msub><mrow><mi>O</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> emissions. We develop a single-level Karush–Kuhn–Tucker reformulation and propose a customized branch-and-bound algorithm to solve this bilevel optimization problem. Numerical experiments demonstrate the potential of eco-routing incentives to promote sustainable urban mobility and highlight the benefits of combining subscription- and path-based reward credits for traffic congestion management.</div></div>","PeriodicalId":54418,"journal":{"name":"Transportation Research Part B-Methodological","volume":"200 ","pages":"Article 103289"},"PeriodicalIF":6.3000,"publicationDate":"2025-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part B-Methodological","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0191261525001389","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
This study contributes to sustainable transportation modeling by proposing a user-centric approach to incentivize eco-routing travel behavior. We propose a novel reward credit scheme to provide path-based commuter incentives with the goal of reducing emissions and the total system travel time. The scheme takes into account multiple classes of commuters in the network that differ by their value of time and their vehicle energy type. Users subscribing to the scheme may earn monetary reward credits which act as incentives to promote sustainable mobility. Two types of reward credits are considered: subscription- and path-based credits. A discrete choice model is embedded within a traffic assignment model to capture the endogenous impact of commuters’ scheme adoption onto network congestion effects. We introduce a bilevel optimization formulation to determine optimal non-additive, path-based reward credits and subscription-based reward credits within a predefined budget under traffic equilibrium conditions. In this formulation, the follower problem is a parameterized multi-class user equilibrium traffic assignment problem with non-additive path costs and incorporates a logit choice model for scheme adoption. The leader represent the network regulator whose goal is to maximize social welfare by minimizing the total system travel time and total emissions. We develop a single-level Karush–Kuhn–Tucker reformulation and propose a customized branch-and-bound algorithm to solve this bilevel optimization problem. Numerical experiments demonstrate the potential of eco-routing incentives to promote sustainable urban mobility and highlight the benefits of combining subscription- and path-based reward credits for traffic congestion management.
期刊介绍:
Transportation Research: Part B publishes papers on all methodological aspects of the subject, particularly those that require mathematical analysis. The general theme of the journal is the development and solution of problems that are adequately motivated to deal with important aspects of the design and/or analysis of transportation systems. Areas covered include: traffic flow; design and analysis of transportation networks; control and scheduling; optimization; queuing theory; logistics; supply chains; development and application of statistical, econometric and mathematical models to address transportation problems; cost models; pricing and/or investment; traveler or shipper behavior; cost-benefit methodologies.