Enhancing strength-ductility synergy in lightweight complex concentrated alloys via nano-precipitate tailored heterostructures

IF 9.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Song Tang , Guoping Chen , Teng Rui , Zongde Kou , Jiaojiao Yi , Tao Feng , Hussain Zuhailawati , Gerhard Wilde , Si Lan
{"title":"Enhancing strength-ductility synergy in lightweight complex concentrated alloys via nano-precipitate tailored heterostructures","authors":"Song Tang ,&nbsp;Guoping Chen ,&nbsp;Teng Rui ,&nbsp;Zongde Kou ,&nbsp;Jiaojiao Yi ,&nbsp;Tao Feng ,&nbsp;Hussain Zuhailawati ,&nbsp;Gerhard Wilde ,&nbsp;Si Lan","doi":"10.1016/j.actamat.2025.121468","DOIUrl":null,"url":null,"abstract":"<div><div>A strategy to achieve superior strength-ductility synergy in lightweight complex concentrated alloys by utilizing coherent L1<sub>2</sub>-type nano-precipitates to tailor heterostructural architectures is introduced. A non-equiatomic (Cr<sub>0.5</sub>CoNi<sub>2.5</sub>)<sub>100-x</sub>(AlTi)<sub>x</sub> alloy system (x=6, 8, 10, termed AT6, AT8 and AT10) was designed, where Al/Ti additions promoted the formation of coherent L1<sub>2</sub> precipitates with low lattice misfit (δ≈0.14-0.28%) within a face-centered cubic (FCC) matrix. Enhanced yield strengths with increased Al/Ti contents in as-cast alloys stem from precipitation strengthening and solid solution strengthening. Heterostructuring involving cold-rolling and annealing at 800°C induced a fine-grained, heterogeneous bimodal and coarse-grained microstructure in the three alloys. The heterostructured AT8 alloy exhibited a yield strength of 1580 MPa, ultimate tensile strength of 1645 MPa, and elongation to failure of ∼20%, representing a significant improvement in strength-ductility synergy over as-cast counterparts. Increasing Al/Ti contents promoted refined L1<sub>2</sub> precipitates (19.2-49.8 nm) with increased volume fractions (7.1-18.5%), shifting recrystallization kinetics from accelerated to retarded via particle drag effects. The bimodal heterostructures effectively retarded dislocation motion while maintaining the dynamic strain hardening capacity. This work provides a promising design paradigm for advanced structural materials by leveraging multi-scale heterogeneities and precipitation strengthening.</div></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":"299 ","pages":"Article 121468"},"PeriodicalIF":9.3000,"publicationDate":"2025-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645425007542","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A strategy to achieve superior strength-ductility synergy in lightweight complex concentrated alloys by utilizing coherent L12-type nano-precipitates to tailor heterostructural architectures is introduced. A non-equiatomic (Cr0.5CoNi2.5)100-x(AlTi)x alloy system (x=6, 8, 10, termed AT6, AT8 and AT10) was designed, where Al/Ti additions promoted the formation of coherent L12 precipitates with low lattice misfit (δ≈0.14-0.28%) within a face-centered cubic (FCC) matrix. Enhanced yield strengths with increased Al/Ti contents in as-cast alloys stem from precipitation strengthening and solid solution strengthening. Heterostructuring involving cold-rolling and annealing at 800°C induced a fine-grained, heterogeneous bimodal and coarse-grained microstructure in the three alloys. The heterostructured AT8 alloy exhibited a yield strength of 1580 MPa, ultimate tensile strength of 1645 MPa, and elongation to failure of ∼20%, representing a significant improvement in strength-ductility synergy over as-cast counterparts. Increasing Al/Ti contents promoted refined L12 precipitates (19.2-49.8 nm) with increased volume fractions (7.1-18.5%), shifting recrystallization kinetics from accelerated to retarded via particle drag effects. The bimodal heterostructures effectively retarded dislocation motion while maintaining the dynamic strain hardening capacity. This work provides a promising design paradigm for advanced structural materials by leveraging multi-scale heterogeneities and precipitation strengthening.

Abstract Image

通过纳米沉淀定制异质结构增强轻质复杂浓缩合金的强度-延展性协同作用
介绍了一种利用相干l12型纳米析出物定制异质结构来实现轻质复合浓合金强延性协同的策略。设计了一种非等原子(Cr0.5CoNi2.5)100-x(AlTi)x合金体系(x= 6,8,10,分别称为AT6, AT8和AT10),其中Al/Ti的加入促进了面心立方(FCC)基体中低晶格失配(δ≈0.14-0.28%)的L12相的形成。铸态合金屈服强度随Al/Ti含量的增加而增强,主要来源于析出强化和固溶强化。冷轧和800℃退火的异质组织使三种合金形成细晶、非均匀双峰和粗晶组织。异质组织AT8合金的屈服强度为1580 MPa,极限抗拉强度为1645 MPa,失效伸长率为~ 20%,与铸态相比,强度-延性协同效应显著提高。随着Al/Ti含量的增加,L12析出相(19.2 ~ 49.8 nm)的体积分数增加(7.1 ~ 18.5%),再结晶动力学通过颗粒阻力作用由加速转变为减慢。双峰异质组织在保持动态应变硬化能力的同时,有效地延缓了位错的运动。这项工作为利用多尺度非均质性和沉淀强化的先进结构材料提供了一个有前途的设计范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信