Enhancing transcriptome expression quantification through accurate assignment of long RNA sequencing reads with TranSigner

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Hyun Joo Ji, Mihaela Pertea
{"title":"Enhancing transcriptome expression quantification through accurate assignment of long RNA sequencing reads with TranSigner","authors":"Hyun Joo Ji, Mihaela Pertea","doi":"10.1186/s13059-025-03723-2","DOIUrl":null,"url":null,"abstract":"Long-read RNA sequencing captures transcripts at full lengths, but existing methods for transcriptome profiling using long-read data often produce inconsistent transcript identification and quantification results. Here, we introduce TranSigner, a tool designed to provide read-level support for transcripts in a given transcriptome. TranSigner consists of three modules: read alignment to transcripts, computation of read-to-transcript compatibility scores, and a guided expectation–maximization algorithm to assign reads to transcripts and estimate their abundances. Using simulated and experimental data from three well-studied organisms—Homo sapiens, Arabidopsis thaliana, and Mus musculus—we show that TranSigner achieves accurate read assignments and abundance estimates.\n","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"27 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-025-03723-2","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Long-read RNA sequencing captures transcripts at full lengths, but existing methods for transcriptome profiling using long-read data often produce inconsistent transcript identification and quantification results. Here, we introduce TranSigner, a tool designed to provide read-level support for transcripts in a given transcriptome. TranSigner consists of three modules: read alignment to transcripts, computation of read-to-transcript compatibility scores, and a guided expectation–maximization algorithm to assign reads to transcripts and estimate their abundances. Using simulated and experimental data from three well-studied organisms—Homo sapiens, Arabidopsis thaliana, and Mus musculus—we show that TranSigner achieves accurate read assignments and abundance estimates.
通过使用TranSigner准确分配长RNA测序读数,增强转录组表达定量
长读RNA测序捕获全长度的转录本,但是现有的使用长读数据的转录组分析方法经常产生不一致的转录本鉴定和定量结果。在这里,我们介绍TranSigner,这是一个旨在为给定转录组中的转录本提供读取级支持的工具。transsigner由三个模块组成:读取到转录本的对齐,读取到转录本兼容性分数的计算,以及将读取分配给转录本并估计其丰度的引导期望最大化算法。通过对三种生物——智人、拟南芥和小家鼠——的模拟和实验数据进行研究,我们发现transsigner实现了准确的读取分配和丰度估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Genome Biology
Genome Biology Biochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍: Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens. With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category. Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信