Comment on “Advancing material property prediction: using physics-informed machine learning models for viscosity”

IF 5.7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Maximilian Fleck, Samir Darouich, Marcelle B. M. Spera, Niels Hansen
{"title":"Comment on “Advancing material property prediction: using physics-informed machine learning models for viscosity”","authors":"Maximilian Fleck,&nbsp;Samir Darouich,&nbsp;Marcelle B. M. Spera,&nbsp;Niels Hansen","doi":"10.1186/s13321-025-01070-9","DOIUrl":null,"url":null,"abstract":"<div><p>When data availability is limited, the prediction of properties through purely data-driven machine learning (ML) is challenging. Integrating physically-based modeling techniques into ML methods may lead to better performance. In a recent work by Chew et al. (“<i>Advancing material property prediction: using physics-informed machine learning models for viscosity</i>”) descriptors from classical molecular dynamics (MD) simulations were included into a quantitative structure–property relationship to accurately predict temperature-dependent viscosity of pure liquids. Through feature importance analysis, the authors found that heat of vaporization was the most relevant descriptor for the prediction of viscosity. In this comment, we would like to discuss the physical origin of this finding by referring to Eyring’s rate theory, and develop an alternative modeling approach using a thermodynamic-based architecture that requires less input data.</p></div>","PeriodicalId":617,"journal":{"name":"Journal of Cheminformatics","volume":"17 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://jcheminf.biomedcentral.com/counter/pdf/10.1186/s13321-025-01070-9","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cheminformatics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1186/s13321-025-01070-9","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

When data availability is limited, the prediction of properties through purely data-driven machine learning (ML) is challenging. Integrating physically-based modeling techniques into ML methods may lead to better performance. In a recent work by Chew et al. (“Advancing material property prediction: using physics-informed machine learning models for viscosity”) descriptors from classical molecular dynamics (MD) simulations were included into a quantitative structure–property relationship to accurately predict temperature-dependent viscosity of pure liquids. Through feature importance analysis, the authors found that heat of vaporization was the most relevant descriptor for the prediction of viscosity. In this comment, we would like to discuss the physical origin of this finding by referring to Eyring’s rate theory, and develop an alternative modeling approach using a thermodynamic-based architecture that requires less input data.

对“推进材料性能预测:使用物理信息的粘度机器学习模型”的评论
当数据可用性有限时,通过纯数据驱动的机器学习(ML)预测属性是具有挑战性的。将基于物理的建模技术集成到ML方法中可能会带来更好的性能。在Chew等人最近的一项工作(“推进材料性能预测:使用物理信息的粘度机器学习模型”)中,来自经典分子动力学(MD)模拟的描述符被纳入定量结构-性能关系中,以准确预测纯液体的温度依赖性粘度。通过特征重要性分析,发现汽化热是预测粘度最相关的描述符。在这篇评论中,我们想通过参考Eyring的速率理论来讨论这一发现的物理起源,并开发一种使用基于热力学的架构的替代建模方法,该方法需要较少的输入数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cheminformatics
Journal of Cheminformatics CHEMISTRY, MULTIDISCIPLINARY-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
14.10
自引率
7.00%
发文量
82
审稿时长
3 months
期刊介绍: Journal of Cheminformatics is an open access journal publishing original peer-reviewed research in all aspects of cheminformatics and molecular modelling. Coverage includes, but is not limited to: chemical information systems, software and databases, and molecular modelling, chemical structure representations and their use in structure, substructure, and similarity searching of chemical substance and chemical reaction databases, computer and molecular graphics, computer-aided molecular design, expert systems, QSAR, and data mining techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信